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Abstract The negative correlation between speed and

accuracy in perceptual decision making is often explained

as a tradeoff, where lowered decision boundaries under

time pressure result in faster but more error-prone

responses. Corresponding implementations in sequential

sampling models confirmed the success of this account,

which has led to the prevalent assumption that a second

component of decision making, the efficiency of perceptual

processing, is largely independent from temporal demands.

To test the generality of this claim, we examined time

pressure effects on decisions under conflict. Data from a

flanker task were fit with a sequential sampling model that

incorporates two successive phases of response selection,

driven by the output of an early and late stage of stimulus

selection, respectively. The fits revealed the canonical

decrease of response boundaries with increasing time

pressure. In addition, time pressure reduced the duration of

non-decisional processes and impaired the early stage of

stimulus selection, together with the subsequent first phase

of response selection. The results show that the relation

between speed and accuracy not only relies on the strategic

adjustment of response boundaries but involves variations

of processing efficiency. The findings support recent evi-

dence of drift rate modulations in response to time pressure

in simple perceptual decisions and confirm their validity in

the context of more complex tasks.

Introduction

A fundamental characteristic of human decision making is

that its speed can be deliberately increased, but usually at

the cost of precision. The generality of this relation—a

joint increase of response times and accuracy—has been

demonstrated across various domains, such as perceptual

decisions (Miller, Sproesser, & Ulrich, 2008; Palmer, Huk,

& Shadlen, 2005), visual search (Carrasco & McElree,

2001; McElree & Carrasco, 1999), memory retrieval (Do-

sher, 1976; Reed, 1973), or motor planning (Fitts, 1954;

Harris & Wolpert, 1998). Accordingly, research on corre-

sponding speed–accuracy functions (SAFs) has greatly

contributed to our understanding of mental information

processing and decision making (Garrett, 1922; Wickel-

gren, 1977). A particularly relevant finding is that speed

can be traded for accuracy simply by changing the decision

criterion.

This speed–accuracy tradeoff can be straightforwardly

implemented in sequential sampling models, which not

only account for performance in a wide range of perceptual

tasks (Brown & Heathcote, 2005; Ratcliff & McKoon,

2008) but can also be plausibly linked to neurophysio-

logical correlates of decision making (Bogacz, Wagen-

makers, Forstmann, & Nieuwenhuis, 2010; Forstmann

et al., 2008, 2010, 2011; Ho et al., 2012; Ivanoff, Branning,

& Marois, 2008; Philiastides, Ratcliff, & Sajda, 2006; van

Veen, Krug, & Carter, 2008). In general, decision making

in sequential sampling models is based on the accumula-

tion of evidence over time until a boundary (or criterion) is

reached and an associated response is initiated (Brown &

Heathcote, 2005, 2008; Busemeyer & Townsend, 1993;

Diederich & Busemeyer, 2006; Hübner, Steinhauser, &

Lehle, 2010; Ratcliff & Smith, 2004; Ratcliff, 1978; Usher

& McClelland, 2001; White, Ratcliff, & Starns, 2011). The
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negative relation between decision speed and accuracy

results from the lowering of decision boundaries when time

pressure increases. Under high speed stress relatively little

evidence suffices to cross a boundary, so that decision time

is reduced. At the same time, though, the error rate

increases because the wrong boundary is reached more

frequently due to the generally noisy samples of evidence.

Thus, adjusting the decision boundaries can increase speed

at the cost of reduced accuracy, and vice versa. In fact, this

mechanism has often been sufficient to simulate empirical

SAFs, while other model components, such as the rate of

evidence accumulation, were kept constant. This has led to

the prevalent assumption that the joint increase of error

rates and response speed in decision making only reflects a

strategic tradeoff, whereas the efficiency of perceptual

processing is unaffected by temporal demands (e.g., Rat-

cliff & McKoon, 2008; Ratcliff, Thapar, & McKoon,

2003).

Recent reports, however, suggest that the tradeoff

account does not generally hold but that time pressure also

affects the efficiency of evidence accumulation (cf.,

Heathcote & Love, 2012; Heitz & Schall, 2012; Starns,

Ratcliff, & McKoon, 2012; Vandekerckhove, Tuerlinckx,

& Lee, 2008). Indeed, a recent modeling study on several

data sets revealed that an emphasis of speed over accuracy

not only lowers response criteria but also comes with a

reduction in the quality of perceptual processing (Rae,

Heathcote, Donkin, Averell, & Brown, 2014). Further, an

fMRI study indicated that the rate of evidence accumula-

tion in an orientation discrimination task increased when

the instruction emphasized accuracy and, therefore,

reduced time pressure. The sensory processing rate under

accuracy stress could be even linked to the optimality of

orientation-selective activation patterns in V1 (Ho et al.,

2012).

Evidence independent from model assumptions also

indicates that speeding up responses does not necessarily

come with a tradeoff in accuracy. Motivating factors, such

as the prospect of incentives, can mobilize additional

resources (e.g., effort) that speed up responding without a

drop in performance. For instance, in a simple letter cate-

gorization task, response times were shorter on trials that

held out a bonus for fast and correct responses, while error

rates did not change. This effect was already present in the

fastest responses, pointing to an overall increase of pro-

cessing efficiency (Kleinsorge, 2001). Similarly, shifts of

entire SAFs towards better performance in response to

monetary (compared to symbolic) incentives demonstrated

that it is possible to speed up responding without costs in

accuracy (Dambacher, Hübner, & Schlösser, 2011;

Dambacher & Hübner, 2013). The consideration of model-

based theoretical SAFs suggests that this speed-up is

indeed driven by an improved quality of perceptual

processing rather than a change of non-decisional opera-

tions, such as the acceleration of motor execution (Hübner

& Schlösser, 2010).

Yet, there is also evidence that speed pressure affects

late motoric stages of the decision process. In several

studies on lateralized readiness potentials (LRPs), the time

from LRP onset to response execution (LRP-RT interval)

was shorter under high than under low time pressure

(Osman et al., 2000; Rinkenauer, Osman, Ulrich, Müller-

Gethmann, & Mattes, 2004; van der Lubbe, Jaśkowski,

Wauschkuhn, & Verleger, 2001). Since LRP-RT intervals

are largely associated with operations following the

selection of a particular response, these results indicate that

also post-decisional processes, such as motor commands,

are sensitive to temporal demands and hence contribute to

the shape of SAFs. In contrast, sequential sampling

accounts often do not pose time pressure effects on non-

decisional components (e.g., Ratcliff & McKoon, 2008;

Ratcliff, Thapar, & McKoon, 2003).

In sum, there is reason to believe that time pressure

effects on response speed and accuracy do not generally

result from shifts of decision boundaries alone but may

involve changes in the efficiency of perceptual processing

as well as in non-decisional operations. So far, however,

model-based evidence comes mainly from studies on

simple perceptual decisions (Ho et al., 2012; Rae et al.,

2014). More complex tasks involving, for instance,

response conflicts (e.g., Eriksen & Eriksen, 1974; Simon,

1990; Stroop, 1935) were hardly considered because the

applicability of standard sequential models to such data is

limited (Hübner et al., 2010; White et al., 2011). Thus,

although there is ample evidence that also higher percep-

tual decisions follow the typical function of speed and

accuracy, the exact underlying mechanisms are insuffi-

ciently understood. Conceptually, it appears possible that

enhanced task complexity results in an augmented

involvement of response strategies. Accordingly, corre-

sponding SAFs may be largely based on strategic shifts of

response criteria, compatible with the classic assumption of

the speed–accuracy tradeoff. In fact, results from recent

simulations of data from a flanker task support this view

(White et al., 2011). Yet, it is also possible that time

pressure in complex decisions affects other processes, such

as the efficiency of perceptual processing. In line with

recent reports from simple tasks (e.g., Ho et al., 2012; Rae

et al., 2014), one may then expect a modulation of drift

rates as a function of time pressure. Likewise, also non-

decisional operations may play a role for the shape of

SAFs.

Fortunately, recent developments brought forth compu-

tational models that are able to delineate the processes of

complex perceptual decisions (Hübner et al., 2010; White

et al., 2011). While these accounts make some additional

84 Psychological Research (2015) 79:83–94

123



assumptions relative to simple decisions, models from the

sequential sampling family generally permit comparable

conclusions since they share basic components and mech-

anisms. The present study, therefore, aimed at broadening

the current perspective on the relation of speed and accu-

racy and examined the nature of SAFs in more complex

decisions.

We used a flanker task (Eriksen & Eriksen, 1974), which

is susceptible to speed and accuracy demands as are simple

perceptual decisions: response times as well as accuracies

decrease with increasing time pressure. Compared to sim-

ple decisions, though, the flanker task involves the reso-

lution of response conflicts, providing additional potential

targets for time pressure effects. In particular, participants

have to categorize a central target stimulus in the presence

of task-irrelevant flankers. These flankers modulate the

overall item difficulty as they can be incongruent (i.e.,

response incompatible) or congruent (i.e., response com-

patible). A standard finding is a robust congruency or

flanker effect, i.e., slower and more error-prone responses

for incongruent than for congruent stimuli. The flanker

effect often shows a characteristic course over SAFs: under

high time pressure, reduced performance for incongruent

compared to congruent (or neutral) stimuli is predomi-

nantly expressed in accuracy differences, which succes-

sively turn into response time effects as time pressure is

relaxed (Dambacher & Hübner, 2013). The source of the

flanker effect lies in the co-processing of irrelevant flankers

that—together with the target—fall into the initial spatial

focus of attention. Co-processing of congruent flankers

increases evidence in favor of the correct response,

whereas co-processing of incongruent flankers produces

evidence for the incorrect response. Importantly, the pre-

sence of incongruent flankers requires advanced mecha-

nisms of selective attention. Conditional accuracy

functions (CAFs), that are also considered in the present

study (see below), demonstrate that accuracy for incon-

gruent stimuli improves with response time. It is, therefore,

possible that stimulus selectivity (i.e., the ability to restrict

perceptual processing to the response-relevant item) is

relatively low after stimulus onset, but advances with

processing duration (cf., Gratton, Coles, & Donchin, 1992).

The first sequential sampling model that was able to

account for this increase in accuracy is the dual-stage two-

phase (DSTP) model (Hübner et al., 2010).

Comparable to other sequential sampling models for

binary choices, the DSTP model implements response

selection as a diffusion process, which accumulates evi-

dence until one of two response boundaries are reached

(see Fig. 1). The first phase of response selection is based

on sensory information from an early stimulus selection

stage (e.g., sensory filtering) that provides initial perceptual

evidence as input for the diffusion process. Because the

quality of early stimulus selection is often relatively poor, a

Fig. 1 The dual-stage two-phase (DSTP) model. An early stage of

stimulus selection (i.e., sensory filtering/weighting) provides param-

eters for target (lta) and flanker (lfl) processing. They sum up to the

drift rate lRS1 in Phase 1 of response selection. In parallel, a late stage

of stimulus selection (SS) runs with rate lSS until it reaches one of two

boundaries C and -D that reflect the selection of either the target or a

flanker for selective processing. On completion of the late stimulus

selection SS, response selection enters Phase 2, which is characterized

by a transition of the drift rate from lRS1 to lRS2. A decision is

completed as soon as the response selection process (either during

Phase 1 or Phase 2) hits one of two response boundaries A and -

B reflecting the choice alternatives. The duration of the non-decision

time (e.g., sensory encoding and filtering, motor commands) is

captured in parameter ter
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late stimulus selection stage—also implemented as diffu-

sion process—runs in parallel with response selection and

has the function to categorize the response-relevant stim-

ulus component, i.e., the central target among the irrelevant

flankers. Once the late stimulus selection process has fin-

ished, and given that no response has been selected yet,

response selection enters the second phase, in which only

the selected stimulus component (either the target or a

flanker) drives response selection. As a consequence,

response selection changes its processing rate: if the late

stage of stimulus selection has chosen the target, the rate of

evidence in favor of the correct response increases relative

to Phase 1. This efficiency enhancement of response

selection in Phase 2 usually occurs on a substantial pro-

portion of trials and explains why accuracy is higher for

slow than for fast responses. Finally, pre- and post-deci-

sional processes like stimulus encoding and response exe-

cution, respectively, are jointly captured as non-decisional

component. A more formal description of the DSTP

parameters is given below (see also Hübner et al., 2010).

Present study

We used the DSTP model to identify processes that mod-

ulate response speed as a function of time pressure in the

flanker task. Participants had to indicate the parity of a

central target digit before a given deadline (450, 550, or

650 ms) exceeded. In line with previous studies on simple

perceptual decisions, we expected a decrease of response

selection criteria with increasing time pressure. Further,

and more critically, a modulation of drift rates would

indicate that time pressure also affects evidence accumu-

lation (Heitz & Schall, 2012; Ho et al., 2012; Rae et al.,

2014). Specifically, it is conceivable that the quality of

sensory filtering (i.e., early stage of stimulus selection,

captured as non-decision parameter in the DSTP model)

suffers from high time pressure. A short deadline may,

therefore, result in reduced non-decision time as well as in

a lower drift rate in the first phase of response selection. In

addition, impaired early stimulus selection may also

translate in a reduced rate of the late stage of stimulus

selection (cf. Fig. 1).

Methods

Participants

Data were recorded from 16 students (13 female; mean

age: 21.6 years, SD: 3.6 years) at the Universität Kon-

stanz. All had normal or corrected-to-normal vision. The

experiment was performed in accordance with the ethical

standards laid down in the 1964 Declaration of Helsinki

and its later amendments. In agreement with the ethics

and safety guidelines at the Universität Konstanz, we

obtained a verbal informed consent statement from all

individuals prior to their participation in the study.

Potential participants were informed of their right to

abstain from participation in the study or to withdraw

consent to participate at any time without reprisal.

Stimuli

Numerals from 2 to 9 served as target items in a parity-

judgment task. On either horizontal side of the target, two

flankers, that were identical to each other, set up stimulus

congruency. For incongruent stimuli, flankers consisted of

response-incompatible numerals, i.e., flankers and targets

differed in parity. Congruent stimuli were composed of a

target and flankers of the same parity. The target was

always presented at screen center. Each character extended

a visual angle of approximately 0.9� horizontally and 1.27�
vertically and the spacing between characters (center to

center) was 1.27� of visual angle. Stimuli were congruent

on half of the trials and incongruent on the other half. They

were presented in white on a black background on a 19’’

color monitor with a resolution of 1,280 9 1,024 pixels

and a refresh rate of 60 Hz. A USB computer mouse reg-

istered the responses.

Procedure

Participants were seated at a distance of approximately

50 cm from the monitor and received written instruction.

Prior to each block of trials, one of three deadlines (i.e.,

450, 550, and 650 ms) indicated the level of time pres-

sure in the block. Every trial started with a central fix-

ation cross (400 ms plus 600 ms blank), followed by a

stimulus array for 165 ms and a blank screen until par-

ticipants’ response. The task was to signal the parity of

the target numeral by pressing the corresponding mouse

button with the index or middle finger of the right hand

prior to deadline expiration. After each trial, feedback

signaled whether the response was correct (‘‘Korrekt’’,

green color), incorrect (‘‘Fehler!’’, red color), too slow

(‘‘Schneller antworten!’’, red color), or too fast, i.e.,

before stimulus onset (‘‘Zu früh!’’, red color). At the end

of a block, participants indicated the level of effort they

sensed during the block on a five-point scale (not

reported here). Then, they had the opportunity to take a

short break while the mean response time and the pro-

portion of errors of the previous block were presented

together with the balance of earned points (see below).

The experiment comprised three practice blocks and

twelve main blocks of 64 trials, and it took approxi-

mately 1 h.
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Performance-contingent payment

Participants received a base payment of 6 EUR and,

depending on their performance, earned an additional

amount of up to 8 EUR. For performance-contingent pay-

ment, each trial was rewarded with 10 points for a correct

response before the deadline, while errors, too fast, or too

slow responses were not incentivized. In addition, partici-

pants received a bonus of 500 points after each block if

they reached a pre-specified accuracy level (i.e., 70, 80,

and 90 % for the deadlines of 450, 550, and 650 ms,

respectively). Points were converted into money after the

experiment. Written instructions explained that accuracy,

and hence the overall profit, increases with the time spent

for stimulus processing. Participants were, therefore,

advised to exploit the available interval for accurate deci-

sions, but at the same time to put effort in meeting time

demands.

Behavioral results and discussion

Responses faster than 100 ms or slower than 1,200 ms

were excluded from data analysis (\0.5 % of all data).

SAFs are shown in Fig. 2.

Mean response times and error rates

Latencies of correct responses were analyzed in a two-way

repeated measures ANOVA on the factors deadline (450,

550, 650), and congruency (congruent, incongruent). The

results revealed significant main effects of deadline, F(2,

30) = 48.1, p \ 0.001, gp
2 = 0.762, and congruency, F(1,

15) = 36.4, p \ 0.001, gp
2 = 0.708. Response times

decreased with shorter deadlines (458, 431, 389 ms), and

they were faster for congruent than for incongruent stimuli

(420 vs. 432 ms). In addition, the interaction between the

two factors, F(2, 30) = 5.30, p \ 0.01, gp
2 = 0.272, indi-

cated that the congruency effect in response times

increased with deadline.

An analogous ANOVA on accuracies revealed signifi-

cant main effects of deadline, F(2, 30) = 44.0, p \ 0.001,

gp
2 = 0.746, and congruency, F(1, 15) = 80.0, p \ 0.001,

gp
2 = 0.842. Error rates increased with decreasing dead-

lines (8.28, 13.4, 22.5 %), and they were lower for con-

gruent than for incongruent stimuli (11.2 vs. 18.2 %).

Further, the interaction of deadline x congruency, F(2,

30) = 4.60, p \ 0.05, gp
2 = 0.235, attested that the con-

gruency effect in error rates decreased with increasing

deadline.

In summary, the data showed the expected SAF, i.e., a

drop in accuracy as response speed increased with time

pressure. Further, the results confirmed the common pattern

of a progressive shift of the congruency effect from accu-

racies to response times as responses became slower (see

also Fig. 2) (cf., Dambacher & Hübner, 2013).

Distributional data

Cumulative distribution functions (CDFs) for correct

responses were computed from quantile-based (0.1, 0.3,

0.5, 0.7, and 0.9) averages of response times. That is,

correct responses from each participant, congruency con-

dition (congruent, incongruent), and deadline (450, 550,

650 ms) were sorted into six bins comprising 10, 20, 20,

20, 20, and 10 % of the data, respectively (Ratcliff &

McKoon, 2008; Ratcliff, 1979). The resulting empirical

CDFs are represented as points in Fig. 3. Except for the

first quantile under the shortest deadline, they consistently

show a right shift of the response time distribution for

incongruent compared to congruent items.

Because several participants made fewer than five

errors in at least one condition, analogous CDFs for error

response times could not be computed. Instead of

excluding these data sets, we considered error data by

means of CAFs that can be calculated even for conditions

with few or no errors. We, therefore, were able to take into

account data from all participants for the model fits (see

below). Beyond that, CAFs are more informative for our

objective than error CDFs because they directly reflect the

increase of accuracy (and hence selectivity) with response

time (cf., Gratton et al., 1992). We calculated CAFs as

mean response time and proportion of correct answers in

Fig. 2 Speed–accuracy function (SAF) for congruent (filled symbols)

and incongruent (open symbols) stimuli. The three data points in each

congruency condition reflect mean response times and accuracies that

gradually increase with the three deadlines of 450, 550, and 650 ms,

respectively
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each of five 20 % bins of the entire response time distri-

bution (correct and error responses) from each participant,

congruency condition, and deadline. Empirical CAFs are

shown as points in Fig. 4. The figure illustrates charac-

teristic courses of the functions across all deadlines. The

overall level of accuracies gradually increases as deadlines

become longer (cf., also Fig. 2). Further, within each

deadline, accuracies are low for the fastest responses and

approach an asymptote as responses become slower. The

fastest responses show a large congruency effect in

accuracy that diminishes with increasing response times.

This attenuation of the flanker effect is in accordance with

the view that stimulus selectivity improved over time.

Besides these visual similarities of the overall pattern the

model fits revealed also differences between the deadline

conditions.

Modeling

The DSTP (Hübner et al., 2010) model was used to fit the

empirical data. As briefly outlined in the introduction, the

core of the model is response selection, which is divided into

a first and a second phase (Phase 1 and Phase 2), each rep-

resented by a diffusion process (Ratcliff, 1978; Voss, Nagler,

& Lerche, 2013), RS1 and RS2, respectively (see Fig. 1).

Basically, a diffusion process is characterized by a drift rate

parameter reflecting the evidence available for responses A

and B, and by two corresponding boundary parameters A and

-B. Noisy samples of evidence are accumulated over time,

beginning at state X0 until boundary A or -B is reached,

which then triggers the corresponding response. Here, we

assume that X0 = 0, and that A and B represent the correct

and incorrect button press, respectively.

Fig. 3 Cumulative density

functions (CDFs). Panels

illustrate correct empirical

responses (symbols) and model

fits (lines) for congruent (filled,

solid) and incongruent (open,

dashed) stimuli across three

deadlines of 450, 550, and

650 ms

Fig. 4 Conditional accuracy

functions (CAFs). Panels

illustrate empirical quantile

means of the response time

distributions (symbols) and

model fits (lines) for congruent

(filled, solid) and incongruent

(open, dashed) stimuli across

three deadlines of 450, 550, and

650 ms
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In the first phase of response selection, perceptual evi-

dence (for RS1) is provided by an early stage of stimulus

selection, which filters the sensory input and weights task-

relevant stimulus components (Hübner et al., 2010; Logan

& Gordon, 2001). For instance, in our flanker task, the

central stimulus component was always the target. The

attentional weights for the central position are, therefore,

higher than those for the other locations. This translates

into distinct component rates lta and lfl for the relevant and

irrelevant stimulus components, respectively, which result

from the product of bottom-up sensory input and atten-

tional weights. The parameter lta represents the rate of

evidence provided by the target in favor of the correct

response, whereas lfl stands for the evidence contributed

by information from the flankers. Both rates sum up to the

total rate lRS1 for Phase 1 of response selection (process

RS1), i.e., lRS1 = lta ? lfl. The value of lfl is positive if

the stimulus is congruent, and negative if it is incongruent.

Thus, the overall rate for RS1 is reduced for incongruent

compared to congruent stimuli, and can even be negative.

If response selection relied on process RS1 alone there

would be no qualitative improvement over time, and

accuracy for incongruent stimuli would remain at a rela-

tively low level. It has been shown that such a mechanism

is too simple and insufficient to account for distributional

data in the flanker task (Hübner et al., 2010). Instead, a

more sophisticated stimulus selection process SS, also

implemented as diffusion process in the DSTP model, is

assumed to run in parallel with RS1. When this stimulus

selection with rate lSS hits one of its boundaries C or -D,

the target C or a flanker D, respectively, is selected for

further processing, whereas unselected stimulus compo-

nents are henceforth ignored. From that point onwards,

response selection enters Phase 2 and continues as process

RS2 (see Fig. 1). There are two possible scenarios for

Phase 2 in the flanker task: the first is that the target was

selected by SS. In that case, the rate lRS2 is usually higher

than lRS1 in Phase 1, especially for incongruent stimuli. As

a second scenario, the flanker was selected by SS. If the

flanker is incongruent to the target, lRS2 is negative and

leads with high probability to an error. For congruent

stimuli, the selection of a flanker results in a positive lRS2.

Of course, response selection can also complete in Phase 1,

i.e., when RS1 hits one of its boundaries earlier than pro-

cess SS finishes. In this case, the selected response is ini-

tiated without entering Phase 2.

Finally, while Phases 1 and 2 of response selection

reflect the duration of the central decision process, non-

decisional operations are represented by parameter ter. This

parameter captures the duration of pre-decisional pro-

cesses, such as stimulus encoding or sensory filtering (i.e.,

the early stage of stimulus selection), as well as of post-

decisional processes, such as motor planning or response

execution.

Fit procedure

A computer version of the DSTP model was fit to the

distributional data (cf., Hübner et al., 2010). Specifically,

the PRAXIS algorithm (Brent, 1973; Gegenfurtner, 1992)

was applied to find parameter values that minimized the G2

statistics (Wilks likelihood ratio Chi square; cf., Ratcliff &

Smith, 2004):

G2 ¼ 2
XJ

i¼1

Npi ln
pi

pi

� �
;

where N is the number of observations, J is the number of

bins, pi is the proportion of observations in the ith bin, and

pi is the proportion in this bin predicted by the model. For

N, we used the average number of valid trials per person in

the corresponding fit condition. This was uncritical,

because G2 was inappropriate for significance testing and

merely served as goodness-of-fit measure (cf., Ratcliff &

Smith, 2004).

The DSTP model was fit to the proportions of correct

responses in the CDF bins, and to the error proportions in

the CAF bins. Because the congruent and incongruent

conditions were fit simultaneously for each deadline, we

had J = 22 for each fit (6 bins for correct responses in the

congruent condition, 5 bins for errors in the congruent

condition, 6 bins for correct responses in the incongruent

condition, and 5 bins for errors in the incongruent condi-

tions). The degrees of freedom (df) of the goodness-of-fit

statistics were computed as

df ¼ Jc � 1ð Þ þ Ji � 1ð Þ �M;

with Jc and Ji reflecting the number of bins for the con-

gruent and incongruent conditions, respectively, and

M representing the number of model parameters.

The following assumptions were made to restrict the

number of parameters in the model. First, we assumed

symmetric boundaries for both response and stimulus

selection. Second, the value of parameter lRS2, reflecting

the rate of response selection in Phase 2 after stimulus

selection, has the same magnitude irrespective of whether

the target or a flanker was selected. However, if a flanker

was selected, its sign depends on stimulus congruency: the

rate is lRS2 for congruent, but -lRS2 for incongruent

stimuli.

The resulting DSTP model has seven parameters:

boundaries A = B for response selection; component rates

for target and flanker, lta and lfl; rate lRS2 for response

selection in Phase 2; rate lSS for late stimulus selection;

boundaries C = D for late stimulus selection; and finally, a
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non-decision parameter ter. Accordingly, for this model

df = (11-1) ? (11-1)-7 = 13.

Because the signal-to-noise ratio in single participants is

very low, fitting the model to individual data is rather

difficult. We, therefore, performed global fits to quantile

averages across all participants. Using different sets of

parameter start values to avoid local minima, every fit ran

until G2 was minimized. Each of the required several

hundred cycles comprised the simulation of 8 9 105 trials.

To estimate the variability of these global parameters,

we applied a jackknife procedure (e.g., Gray & Schucany,

1972; Jackson, 1986; Mosteller & Tukey, 1977), where a

set of parameter values Pi is computed for each participant

i (i = 1…n) by temporarily omitting participant i and fit-

ting the model to the quantile-averaged data from the

remaining n-1 participants; the global parameters thereby

served as start values for the individual jackknife fits.

Hence, we obtained one parameter set for each participant,

providing a basis for statistical tests of time pressure

effects.

Specifically, the jackknifed values were used to compute

standard errors for parameter difference scores between the

longest (650 ms) and the shortest deadline (450 ms) (Abdi

& Williams, 2010). The corresponding confidence intervals

(CIs) provided a test criterion for time pressure effects in

the global parameters. That is, if increasing time pressure

from the long to the short deadline reliably affected a

particular model parameter, the associated difference score

between the long and short deadline would lie outside the

confidence band (95 % CI as one-sided test, 97.5 % CI as

two-sided test).

For comparison, we also submitted the jackknifed

parameters to ANOVAs on the within-subject factor

deadline including all three levels of time pressure (450,

550, 650 ms); the artificially large F values due to the

reduction of error variance of the jackknifing procedure

were corrected as Fc = F/(n-1)2. To our knowledge, the

validity of ANOVAs on jackknifed data has yet only been

confirmed in the context of onset latencies of LRPs (Ulrich

& Miller, 2001). It was, therefore, interesting to test

whether its application to model parameters produces

similar results as the jackknife-based CIs.

Fit results and discussion

Figures 3 and 4 illustrate that the DSTP model (lines) fit

the data (symbols) rather well. Table 1 shows the DSTP

parameters from fits to averaged data from all participants.

Table 2 lists the parameter difference scores together with

the jackknife-based CIs as well as the p values of the

ANOVAs.

As expected, the parameters for response boundaries A

and B decreased as deadlines were reduced. The effect was

significant on the level of the 95 % CI as well as in the

ANOVA [Fc(2, 30) = 5.24, p = 0.011]. This result reflects

the canonical speed–accuracy tradeoff as it is described in

numerous SAF simulations (Ratcliff & McKoon, 2008).

Critically, deadlines also affected the drift rate lta for

the target, which gradually decreased with increasing time

pressure [97.5 % CI; Fc(2, 30) = 28.59, p \ 0.001]. In

contrast, the component rate lfl for flankers was not

Table 1 Parameter estimates from DSTP model fits to distributional data of the three deadlines (DL of 450, 550, and 650 ms)

Parameters

DL lta lfl A/B lSS C/D lRS2 ter G2 df

450 0.0672 0.0311 0.0459 0.3523 0.0768 0.0982 0.2360 0.3128 13

550 0.1194 0.0438 0.0481 0.3846 0.0770 0.0933 0.2740 1.6806 13

650 0.1683 0.0386 0.0510 0.4211 0.0813 0.0891 0.2989 2.1891 13

Drift rates reflect the increase of accumulated evidence per second

lta drift rates for the target in Phase 1, lfl drift rates for flankers in Phase 1, A/B response selection boundaries, lSS drift rates for the late stage of

stimulus selection, C/D boundaries for the late stage of stimulus selection, lRS2 drift rates for response selection in Phase 2, ter mean non-decision

time (in seconds), G2 Wilks likelihood ratio Chi square, df degrees of freedom

Table 2 Jackknife and ANOVA results

DDL650-DL450 CI0.95 CI0.975 |DDL650-

DL450| [ CI

pANOVA

lta 0.1011 0 ± 0.0263 0 ± 0.0320 ** \0.001

lfl 0.0075 0 ± 0.0184 0 ± 0.0224 0.399

A/B 0.0051 0 ± 0.0046 0 ± 0.0056 * 0.011

lSS 0.0688 0 ± 0.0213 0 ± 0.0259 ** \0.001

C/D 0.0045 0 ± 0.0100 0 ± 0.0121 0.528

lRS2 -0.0091 0 ± 0.0183 0 ± 0.0222 0.500

ter 0.0629 0 ± 0.0187 0 ± 0.0228 ** \0.001

DDL650-DL450 difference scores between global DSTP parameters of the

longest (650 ms) and the shortest (450 ms) deadline (cf. Table 1), CI0.95

and CI0.975 jackknife-based 95 and 97.5 % confidence intervals of the

DSTP difference scores, respectively, |DDL650-DL450| [ CI DSTP differ-

ence score is outside the 95 % (*, one-sided test) or the 97.5 % (**, two-

sided test) confidence interval, pANOVA corrected p values of one-way

repeated measures ANOVAs on jackknife-based parameters for the three

deadlines (450, 550, 650 ms)
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significant. Overall, the summed rate lRS1 (i.e., lta ? lfl)

dropped substantially: with decreasing deadline, respec-

tively, lRS1 amounted to 0.2070, 0.1632, and 0.0983 for

congruent stimuli (i.e., lfl [ 0) and to 0.1297, 0.0756, and

0.0361 for incongruent stimuli (i.e., lfl \ 0). Thus, com-

patible with recent evidence that the rate of perceptual

processing is sensitive to time pressure (Ho et al., 2012;

Rae et al., 2014), early stimulus selection in the flanker task

is less efficient under speed stress and hence results in an

attenuated response selection RS1.

Furthermore, the rate for late stimulus selection lss

decreased with time pressure [97.5 % CI; Fc(2,

30) = 22.27, p \ 0.001], whereas the threshold parameter

C/D was not reliably affected. As a consequence, the mean

duration of Phase 1 became longer under shorter deadlines,

which in turn increased the probability that response

selection completed already in this first phase. In fact, our

simulations revealed that for decreasing deadlines the

proportion of terminated decisions in Phase 1 was 0.54,

0.55, and 0.57 for congruent, and 0.47, 0.49, and 0.55 for

incongruent stimuli, respectively. Thus, besides lower rates

of response selection in Phase 1, also the decreasing

number of decisions entering the more reliable Phase 2

contributed to impaired performance under time pressure.

The rate lRS2 for Phase 2 of response selection yielded

no reliable deadline effect. Yet, in contrast to the other

parameters, lRS2 numerically increased with time pressure.

This illustrates that the efficiency of response selection in

Phase 2 is not necessarily directly proportional to Phase 1.

Instead, once the late stage of stimulus selection has chosen

an item (i.e., target or flanker), evidence accumulation for

response selection enters Phase 2 and proceeds on the basis

of this categorical stimulus representation. This is even the

case when the efficiency of preceding processes was low,

for instance, due to poor sensory filtering.

Finally, shorter deadlines also caused a decrease in

parameter ter [97.5 % CI; Fc(2, 30) = 24.42, p \ 0.001],

which reflects non-decisional portions of response times,

such as stimulus encoding and the early stage of stimulus

selection. A shortening of ter can, therefore, result in a low

quality of sensory filtering, which is in line with the smaller

rates in the subsequent Phase 1 of response selection and

the late stage of stimulus selection (see above). In addition,

ter comprises the time from response selection to execution;

hence its shortening may also point to the acceleration of

motor programs. This is compatible with a time pressure-

induced reduction of post-decision motor intervals as

revealed by LRPs (e.g., Rinkenauer et al., 2004). Note that

different temporal effects of ter (e.g., sensory filtering,

motor commands) are neither mutually exclusive nor

exhaustive, since processes underlying ter are generally

underspecified in current implementations of sequential

sampling models.

General discussion

The assumption that the inverse relation between speed and

accuracy reflects a tradeoff resulting from (strategic)

adjustments of response criteria is widely accepted. Recent

studies on simple perceptual decisions, though, suggest

that, in addition to response criteria, the rate of evidence

accumulation is also affected by time pressure (Heathcote

& Love, 2012; Heitz & Schall, 2012; Ho et al., 2012; Rae

et al., 2014; Vandekerckhove, Tuerlinckx, & Lee, 2008).

The present results of a more complex flanker task support

this view as they demonstrate that modulations of drift

rates and the duration of non-decision processes co-deter-

mine SAFs. In particular, fits of the DSTP model revealed

that sensory filtering, and therefore, the efficiency of early

response selection suffered from time pressure. We discuss

the implications of these findings in the following.

As expected, time pressure generated a SAF: response

times as well as accuracy decreased with shorter deadlines.

The data also showed a pronounced flanker effect with

better performance for congruent than for incongruent

items across all deadlines, an effect that progressively

moved from accuracy to response times. Overall, the data

pattern is consistent with results from previous flanker

tasks (e.g., Dambacher et al., 2011; Dambacher & Hübner,

2013; Hübner & Schlösser, 2010).

The data were fit with the DSTP model that is able to

decompose processes of perceptual decisions under con-

flict. Similar to other dual-process accounts (Evans &

Stanovich, 2013), the DSTP model permits the separation

of an early stage of attentional stimulus selection from a

later stage of high selectivity (Hübner et al., 2010; Hübner

& Töbel, 2012). For the present data, this account provided

decent fits across all levels of time pressure. The observed

decrease of decision boundaries with deadlines is in line

with numerous previous studies fitting single-stage

sequential sampling models to data from simple perceptual

decisions (e.g., Ratcliff & McKoon, 2008; Ratcliff &

Rouder, 1998; Ratcliff & Smith, 2004). Accordingly, time

pressure engages a tradeoff of speed against accuracy that

permits faster responses via the reduction of the required

evidence for response selection.

Importantly, we also found modulations of the rate of

evidence accumulation. As time pressure increased, the

component rate for target processing lta decreased by

around 60 % from the longest to the shortest deadline. Also

the drift component for flanker processing lfl, although not

significant, was numerically lowest under the shortest

deadline. The consequence of this inferior output of early

stimulus selection is a substantial drop in the overall drift

rate lRS1 (i.e., lta ? lfl) in Phase 1 of response selection.

These results corroborate findings on simple decisions

showing that the integration of perceptual evidence is
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reduced under time pressure (Ho et al., 2012; Rae et al.,

2014). They, therefore, suggest that SAFs in complex tasks

are not solely based on strategic shifts of response criteria.

Interestingly, the finding is at odds with another recent

modeling study of data from a flanker task, in which par-

ticipants were instructed to emphasize speed or accuracy in

different blocks of trials (White et al., 2011). Fits of several

models confirmed the typical decrease of response criteria

in speed vs. accuracy blocks, but against the authors’

expectations, modulations of drift rates did not appreciably

improve the fits. One possible reason is that the effects

escaped observation because the speed instruction did not

impose an explicit deadline, which may have resulted in a

relatively low level of time pressure. Likewise, the accu-

racy instruction presumably posed a moderate challenge as

it simply asked participants to avoid errors even if this is at

the cost of speed. White et al. suggested that this task

description was well compliable with capacity-saving cri-

terion shifts, without an effort-demanding increase of

attentional resources. In contrast, the present deadlines set

up clear temporal limits that entailed error feedback for too

late responses. Arguably, this encouraged participants to

meet temporal demands. At the same time, they were

motivated to exploit the available time under long dead-

lines to increase accuracy and, therefore, to maximize their

profit. Indeed, our performance-contingent payment

reflects another difference to White et al.’s method and

may have additionally motivated the investment of atten-

tional effort to optimize performance. Other reports of

improved efficiency in response to performance-contingent

compared to flat payments in flanker tasks support this

conclusion (Dambacher et al., 2011; Hübner & Schlösser,

2010). Together, the data suggest that changes of percep-

tual processing rates rely on clear, priorly known levels of

time pressure and high commitment of participants to the

task.

In addition to the rate of response selection in Phase 1,

the rate lSS of the late stage of stimulus selection decreased

with time pressure. Consequently, the mean duration of

Phase 1 increased with shorter deadlines, leading to a

higher proportion of responses that were already triggered

in Phase 1 and, accordingly, had a lower accuracy.

A plausible reason for the drift rate modulations in

Phase 1 of response selection and late stimulus selection is

expressed in parameter ter. Its decrease with time pressure

indicates that less time was allocated to non-decision pro-

cesses, such as stimulus encoding and sensory filtering. As

a result of impaired filtering, we would expect a decrease

of the drift rate for targets relative to that for flankers. In

fact, we observed a drop of the ratio of target vs. flanker

rate from a value of around 4:1 (i.e., 0.1683 vs. 0.0386)

under the long to around 2:1 (i.e., 0.0672 vs. 0.0311) under

the short deadline (see Table 1). This indicates that the

quality of sensory filtering under higher time pressure was

indeed reduced.

Variations of ter may also point to deadline effects on

other non-decisional components. Yet, current sequential

sampling accounts (including the DSTP model) conflate

different pre- and post-decisional components in one

parameter, so that their unique contribution remains covert.

One of the contemporary challenges is, therefore, to refine

the models to disentangle non-decisional processes that

have been shown to play a role for the time course of

decision making. For instance, LRP studies attested the

speed-up of post-decisional processes in response to time

pressure (Osman et al., 2000; Rinkenauer et al., 2004; van

der Lubbe et al., 2001). These results suggest that temporal

demands can also affect the duration of motor operations, a

finding that broadens the traditional view of threshold

modulations as determinant of SAFs. Further, empirical

evidence suggests that advanced temporal preparation for

the occurrence of an imperative stimulus affects the onset

rather than the rate of evidence accumulation (Bausenhart,

Rolke, Seibold, & Ulrich, 2010; Seibold, Bausenhart,

Rolke, & Ulrich, 2011). Sequential sampling models

uniquely capturing the duration of pre-decisional opera-

tions could further delineate distinctive effects of decision

onset and accumulation rate. Thus, the decomposition of

non-decisional components would foster a more fine-

grained view on the dynamics of decision making.

As a note on statistical analyses, we took advantage of

the jackknifing procedure to draw inferences about

parameter variability between different levels of time

pressure. While resampling techniques such as jackknifing

or bootstrapping are well established as powerful analysis

tools (Efron, 1979, 1982), they have hardly been consid-

ered for the evaluation of model parameters. As shown in

this study, though, resampling can be useful to determine

the reliability of effects on one or more free parameters.

This is especially helpful when single-participant data are

too noisy for individual fits. Moreover, resampling statis-

tics enrich commonly reported goodness of fit measures

(e.g., G2, AIC, BIC), which do not provide significance

tests of model results. We demonstrated the feasibility of

the jackknife approach by computing CIs for simple effects

between the two extreme deadlines as well as ANOVAs

including all three deadline levels. Notably, the pattern of

results was the same in both analyses. We stress, however,

that a formal generalization from CIs to ANOVAs has yet

been described for LRPs (Miller, Patterson, & Ulrich,

1998; Ulrich & Miller, 2001) but is missing in the domain

of model parameters. Future applications and simulations

may hence disclose further advantages and limits of

resampling techniques for statistics on model parameters.

In conclusion, the present flanker task provides evidence

that adjustments of response criteria are not sufficient to
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account for SAFs in decisions under conflict. Instead,

formal modeling shows that time pressure reduces the

duration of non-decisional processes and impairs early

sensory filtering, which lowers processing efficiency in

decision making. Our results add to recent reports of speed-

induced modulations of processing rates (e.g., Ho et al.,

2012; Rae et al., 2014) and expand their validity from

simple to more complex perceptual decisions involving

selective attention and response conflict.
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