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Theoretical Note

Algebraic Representation of Additive Structures
with an Infinite Number of Components
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Represeniation theorems for additive conjoint structures with an infinite number of
components were (irst developed by T. C. Koopmans (1960, Ecenometrica 28, 287-309) for
modelling dynamic decision behavior. However, he proved his theorems within a topological
framework. Here, the theorems are adapted to and proved within a4 more general algebraic
framework. Moreover, while Koopmans provided a representation only for bounded
component sequences, here the representation is extended to unbounded sequences satisfying
polynomial growth. © 1993 Academic Press, Inc.

Additive conjoint structures with an infinte number of components were intro-
duced by Koopmans (1960) to model dynamic decision behavior. He derived
representations for preference orderings of consumption programs (see also
Koopmans, Diamond, and Willilamson, 1964; Diamond, 1965; Koopmans, 1972).
Recently, Hiibner (198%a) showed that such structures are not only useful in
modelling other dynamic behavior as well, but that they are also valuable in
combining axiomatic measurement theory and lincar system theory, By successfully
modelling loudness adaption he demonstrated that his ideas are even suitable for
system identification (Hiibner, 1989b).

A disadvantage of Koopmans’ results is that they are developed within the
topological framework of Debreu (1960). It is not only that this formalism is
uncommon for psychologically motivated measurement theories, but, as has been
mentioned by Krantz, Luce, Suppes, and Tversky (1971) and recently emphasized
by Wakker (1988), the algebraic approach of Krantz ef al. (1971) is more general
than the topological; ie., the algebraic approach is applicable to more cases.

Reprint requests should be sent to Ronald Hiibner, at Institut fiic Psychologie, Technische Universitit
Braunschweig, Spielmannstr, 19, D-38106 Braunschweig, Germany.

629

0022-2496/93 $5.00

Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.
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Moreover, Koopmans starts his work by already assuming real valued representa-
tions of the components and taking advantage of the strong properties of the reals.
Here, we start with qualitative axioms leading to such representations of the
components. This approach is advantageous with respect to questions concerning
the testability of structures. Thus, there are several reasons making it desirable to
adapt Koopmans’ concepts to an algebraic formalism.

Although Hiibner (198%a) reformuiated the main theorem of Koopmans (1960)
in algebraic terms, an algebraic proof was not given. In this paper we present
this proof. Moreover, Koopmans only furnished a representation for bounded
sequences. Here, we also derive a representation for unbounded sequences satisfying
polynomial growth.

In order to adapt Koopmans' resuits to an algebraic framework, some of the
well-known concepts of finite additive conjoint measurement must be reformulated.
Other definitions remain in the form used in n-component structures (cf. Krantz er
al., 1971).

DeriNiTION 1. (a) Let 7={1,2,..}. A binary relation > on the infinite
Cartesian product 4, x 4, % --- induces for each ze 4, x4, x --- and all McTa
relation =3, by

(@, az, ..) =5, by, by, ) il (a7 M ez, )= (bEM B3V ),

]

where
on. jar i ieM
Tz, il i¢M.
(b} = is independent ifl for any finite or cofinite (i.e,, J— M finite) set M <[

T~

and all z the induced relation 23, is independent of z.

Obviously, if > is a weak order all induced %, are also weak orders, and in the
case of an independent > for all M the orders 3, coincide and are denoted by
Z - Instead of 2z, and z(;, we simply write 2z, and 7. respectively.

~ij

DeFmNITION 2. A binary relation > on A4,xA,x --- satisfies restricted

-~

solvability iff for all ie I, whenever there exist b;, b;€ A, such that
(Bys o by ) Z (g, s @y ) Z (B, oy by ),
then there exists a &,¢€ A;, such that

(Biy s by )~ (@, ey gy )

DeriniTioN 3. Let 2 be an independent, connected, and transitive relation on
A% Ayx ..., that is, an independent weak order. For any set § of consecutive
integers a set {x;/x,;€ 4, i€ S} is a standard sequence (of component 1), iff there



ADDITIVE STRUCTURES 631

are g, f in some other component A,, ke N, k51, such that not {a~, ) and

for all i, i+1eM, x u~ x; B A parallel definition holds for the other
components,

DerINITION 4. Let 2 be a binary relation on 4, x A, % ---. The component A,
is called essential iff there are a,be 4, and for some j#1i, je, there exists pe 4,
such that not ap ~; bp.

DeFINITION 5. (a) Let A4, iel, be nonempty sets and > a binary relation on

A xAdyx -+, The structure (A, x A;x ---; 2> is called an infinite component
structure iff 7= satisfics the following five axioms:

1. Weak order.

2. Independence (Definition 1).

3. Restricted solvability (Definition 2).

4. Every strictly bounded standard sequence is finite.

5. At least three components are essential.

(b) If A;=A for all ie7 then the infinite compenent structure is called an
I-component structure and is denoted by (A7, = .

Unfortunately, no general representation can be obtained for infinite component
structures. However, it can be shown that representations exist for some substruc-
tures defined by additional constraints.

In the following, we consider [-component structures and their representations
provided they satisfy the additional properties of stationarity and monotonicity
introduced by Koopmans (1960, 1972).

DEFINITION 6. A binary relation > on A’ is stationary ifl there exists an x e A,
such that

(ay,a,, . 2B, by, ) iff (x,a,,ay, ..)2Z(x b8, ..)
for all (a,, a,,..), (b, by, ..} ed’.

DerINITION 7. Let 2= be an independent weak order on A'. The relation = is
said to satisfy the mtonotonicity condition iff (@, >, b;) for all ie F implies

o~

{al! az: --') z (blp bz, ...).

Clearly, by independence the element x< A in the stationarity condition can be
replaced by each ye 4. Moreover, it should be noted that in the case of finite
sequences monotonicity is implied by independence and transitivity.

The first result is a representation of the wltimately constant sequences, that is,
sequences of the form (a,, a,, .., a,, a, 4, ..) with a;,, a€ A.



632 HUBNER AND SUCK

THEOREM 1 (cf. Koopmans, 1972). Ler {A4', 2> be an I-component structure
satisfying stationarity and monotonicity. For the set of ultimately sequences with nz3
an order-preserving representation is given by

n “H

Z A ula) + ]AT)

i=1

u(a), (1)

with 0 < i< |, and u an interval scale on A.

The proof of this theorem follows essentially the lines of Koopmans (1972) and
is omitted. Some minor changes are necessary because of the algebraic rather than
topologic axioms. Note that the independence condition formulated in Definition 1
is stronger than the one employed by Koopmans. This drawback is, however,
compensated for by a much weaker solvability assumption.

In the next theorem an additive representation of all bounded sequences of an
I-component structure is developed. As in the case of Theorem 1, a similar resuit
was also proved by Koopmans (1972). This time, however, a major part of the
proof, namely case (ii), must be completely rewritten, because Koopmans exploited
the topological propertics of the reals, namely, their continuity with respect to
topological connectedness and separability, in an essential manner. In the following
proof this property is completely replaced by the much weaker condition of
restricted solvability.

DEFINITION 8. A sequence (a;} is bounded, il there are g, @c A, where a7, a,
such that

ar.a; ;7. a forall i=12, ..
For the set of bounded sequences the following representation theorem holds:

THEOREM 2. Let (A’, =) be an I-component structure satisfying stationarity and
monotonicity. Then, for the set of bounded sequences there exist an interval scale u
on A and a unigue number 0 < A <1, such that

(==}

(a)z (b)) #f X A 'ula)z Y A uby). (2)
i=1 i=1
Proof. The interval scale u and the number 4 can be obtained from any finite
substructure of the I/-component structure. Also, 2 < 1 is proved in the same way as
in the proof of Theorem 1 (cf. Koopmans, 1972, pp. 87-88). The boundedness of the
sequences implies that for all i=1, 2, .,

w@)zu(a)zu@) and  u(b)>u(b,)>ub).

From 0 <4 <1 it follows that the two series in (2) are absolutely convergent and,
therefore, the sums in (2) are well defined.
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We define bounds for any two bounded sequences (a;) and (b,) by

g=

o if bxa _ {4 if axb
b, if axb  PT\h i b>a

It follows that u(g) > u(g).
Let

‘Z ~lula,). (3)
{i) Assume first that @[(g,)]> @[(b;))] and

@[{a)}] - @[(b)]=35>0.

Consider the two sequences

a'=(ay, .., a,, 8 & ) and b*=(b,.n b, g & )

where » is chosen such that

. »
(£ )@ -sten =1 wo)-ugn <o

i=n+1 1—
It follows that
Pla)] 0= T 7 lula) —u(g)] <5
and
B(b")— B[(b,)] <
This gives

D{a")—D(p") =5 >0,
which impiies a” > #" by Theorem 1. Using the monotonicity condition we obtain
(a)za">b"z (b))
{ii} Assume next that for two bounded sequences (a;), (),
P[{a)]=@[(b;})] but () (a)

holds. There exists an index j such that &>, a;, because otherwise monotonicity
would imply (b;) < (a;).

b;>,a; implies u(h,) > u(a,). (4)
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Let @' denote the sequence (ay, .., @;_y, b;, a;., , ...}); then
a' > (a;).
The definition of ¢ implies
d(a')—d[(a)]=u(b;)) —u(a;) >0
by (4). Thus
D[(6))]) = PL(a;})] < Pla').

Case (i) and the assumptions yield {a,)<{b,}<a’. By restricted solvability there
now exists ¢ € 4, such that

@y, @y, 68,4y, )= a" ~ (b)) > (a). (5)

Again by case (i), " ®(e")=d[(h,)] (because B(a”)<P[(b;)] as weill as
®{a") > &[(b,})] would by case (i) contradict (5)).
This implies @(a")=®[(a,)]. However, direct calculation yields

D(a")— Pl{a)] = ufc) —ulay),

hence u(c)=wula;) and c~; a; and a” ~ (a,). Therefore (b;) > a”, contradicting (5).
Note for later use (proof of Theorem 3) that in this part of the proof the
boundedness of the sequences was used only via case (i).

(iii) The last case, ®[(b,)] > ¢[(a;)], is symmetric to the first, ]

Finally, we prove a theorem to represent possibiy unbounded sequences.

We consider only structures (A”, >) in which unbounded standard sequences
in both directions exist, ie, there exist a, e 4, not {a~; ), and for all
ie{0,+1,+2, ..} elements s;€ 4 such that (s, &)~ (5,_,, ).

Without losing generality we assume o<, f, whence s, <, s;,  for all i

For ae A’ the function @(a) defined in Eq. (3) can be considered as a particular
value of the power series

(=}

(pa(t) = Z u(af) 'tr'il-

Clearly, &(a)=¢,(Ai). The radius of convergence of this power series is given by
r.:=(limsup, ., [u(a)] "} "
If we consider only |7] < 1 then the modified radius of convergence defined by

pq = min(l, r,}

is more suitable for what follows.
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If the constant A of Theorem 2, which is characteristic of the structure (47, =),
satisfies A < p,, then &(a) exists; if 4> p,, then ®(a) does not converge and in the
case A = p, the situation may be either way. The function # on A is an interval scale.
It is readily verified that p, is unaffected by linear transformations (in fact that is
the reason for using p, instead of r_, because in cases where r, > 1, a transforma-
tion u+ yu + 6 with 8 # 0 reduces the radius of convergence of ¢ (1) to 1).

The following lemma gives a formula for the calculation of p,. It is worth men-
tioning for two reasons: it does not use x and although the sequence {m,f{a)) (cf.
Definition 9) depends on the particular standard sequence chosen to define it, the
left-hand side in Lemma 1 does not.

DerviTIoN 9. For a=(2;}e 4" and an infinite standard sequence {s5,) in both
directions let #y(a) be the index such that

f

Sank@) 1 AN <1 Spptar 1

Note that n,(a) always exists because otherwise the standard sequence would be
bounded above or below.

LemMa 1. For all unbounded ac 47

p. = (lim sup [my(a) V) .

N — w0

Proof. By the definition of m(a) and the properties of u we have
u(smm_u)) Lulay) < “(Sm.y(awr 1) (6)

However, because (s,) is a standard sequence, u(s;) is easily evaluated; one proves
by induction drawing on Theorem 1:

u(s,)=ik{u(f) — u(x)) + u{sy)) for ief{0,+1,42, ..} (7)
With this result (6) yields, with ¢ = A(u(f) — u(a)) >0,
e -mpyla)+u(se) Sulay)<c-(mpyla)+ 1)+ uls,y).

Thus,

= c-min(|mpla)l, |myla)+1])
< c-max(|mpla); |myla)+1])

() — ulso)| { (8)

Because of the unboundedness of g the min in Eq. (8} is greater than 0. Therefore
lim sup ., |mp(a)] Y =lim sup,_ ., [ma(a)+ 1", likewise limsup, .. ju(ay)—
u(so)| V¥ =lim supy_, o, |u(ay)|"Y, yielding the lemma. |

To state our main result we need one more concept.
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DermnITION 10.  Denote by n,(a) the index for which it holds that

(Sn,v[ab Of, "') 5 (aN+ 1> aN+ 2 '")-‘< (Sn,w(a)+ 13 o&, “‘)'

a is of polynomial growih if

(lim sup [np(a)| ")~ = p,.

N—ax

For a sequence of polynomial growth the behavior of the remainder (ie.. the
element {ay,,,dy.z2, ~)EA’) is not extremely different from that ofa,. For
example, if n,(a) =~ N* - my(a} for an arbitrary k > 0 then a is of polynomial growth
whereas an ge A’ with ny(a) =~ 2" .mf{a) is not (cf. the relation between p, and
my(a) derived in Lemma 1}.

TueorReM 3. Let {A',=) be an above and below unbounded I-component
structure (ie., infinite standard sequences in both directions exist in {A",2))
satisfying stationarity and monotonicity. Furthermore, let (a,), (b,) € A’ be of polyno-
mtial growth and let A be in the interior of the circle of convergence of both power
series ZP u(a,) -t v and TP u(b))-t', ie, A<p,, ps. Then

@ty B YA ua)> T A ulb)
1 1

Proof. (i) Let 2, fe A be fixed elements, a <, f. Furthermore, let ..., 5_,, 5o,
$1,55,..-€4 be an infinte standard sequence with respect to «, . Note that
existence of (s5,} is guaranteed by restricted solvability and the unboundedness of
(A", =>. Assume a,be A’ satisfying the assumptions of the theorem and
@{a) > P(b), where @ is defined in Eq. (3). Since the standard sequence (s;) is finite,
for each N there are ny(a), ny(b) e I such that

(an(a]! o, ) 5 (aN+ 1 aN+29 "') ‘< (Sm\'(a)+ 1y %, )

and mutatis mutandis for b.
By solvability we find &, nye A such that (&, 0, )~ (@n,(r dy4zs ) and
(#a>0 ) ~(bxi1s byia,..). From stationarity we infer

EN = (ay, . ap, Eny 2 oy ) ~a, n¥i=(by, by s 0, ) ~b (9)
However, £V and n” are ultimately constant sequences. Thus, if we can show
BV > D(n"), (10)

then by Theorem 1 we can conclude £V 5, which by (9) yields a > b. To prove
(10), we observe
N

P(EY)= X ula,) A7+ AV ulEy). (11)

=1
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From the definition of £, it follows that u(s,,,,) <u(&y) <u(s, 1) Inserting
Eq. (7) in this estimation yields

Wy} =c-nyla)+0(1), {12)

where (1) is some bounded function and ¢ a constant. Since A is in the interior
of the circle of convergence, we have

A< (lim sup |u(a,)}™)~". (13)

L)

Moreover by Lemma 1, lim sup, _, . |uia,)]" =lim supy _, (mla))V". By poly-
nomial growth of a we derive, from Eq.(13), A <(limsupy_ (rx{a))¥™) ! or
Anp(a))¥<y<1 for all but finitely many N, whence i*ny(a)— 0. Inserting
Eq.(12) into Eq.(11) and using the result just proved vield &(¢Y)— ®(a) for
N — 0. Equivalently we find &{n")— ®(b) for N — .

Now, let N be large enough. Then the assumption @(a)> @(b) yields Eq. (10)
and by Theorem 1, g > b.

(ii) The case @(a)=@(bh) but a> b is analogous to the corresponding proof
in Theorem 2, |

It has aiready been mentioned that in our theorems independence conditions
stronger than those used by Koopmans (1972) are assumed. The reason lies in the
strong topological requirements entailed in Koopmans’ axioms. He formulates and
proves his theorems only for sets 4 which are connected subsets of the n-dimen-
sional Euclidean space (cf. Koopmans, 1972, Postulate 1, p. 81). It is easy to refor-
mulate our theorems with independence conditions using only sets M such that
|M| <2 or |- M| <2 (cf Definition 1), which is almost as weak as in Koopmans
(1972), if one is willing to stipulate a stronger solvability condition.

Another point of interest is the gap between Theorems 2 and 3. If 4 is bounded
in the sense that ail standard sequences are finite but 4 does not possess a maximal
or minimal element, then ®(x) is convergent for all xe 4%, but we cannot draw on
Theorem 2 for a representation of ;= because some sequences will have no bounds
d, g. We conjecture that an artificially defined maximal (minimal) clement adjoined
to 4 and a suitable extension of = can reduce this case to Theorem 2, but at
present an extension theorem applicable in this case seems not to be available.
Koopmans (1972) suggests a condition which is strong enough to ensure the
existence of a constant sequence equivalent to ae A’ with convergent @(a).
Obviously, in this case the proof technique of Theorem 2 yields the desired
representation theorem.

Finally, the case with convergent @{a} but i on the boundary of the circle of
convergence of the power series >, u(a;}-+'~' is not covered by Theorem 3 and
remains as un unsolved problem.
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CONCLUDING REMARKS

With the proofs provided in this paper the results of Koopmans (1972}, concern-
ing the representation of infinite component sequences, have been adapted to the
common and quite general framework of algebraic measurement theory and have
also been extended.

Unfortunately, infinite component sequences have been fairly neglected in
measurement theory, although they are interesting not only for modelling dynamic
decision making as intended by Koopmans. Interpreting the index of the
components as a time index allows one to go beyond this example and consider
other dynamic relations as well Moreover, such structures can be related to
standard linear system theory (see Hiibner, 1989a). For certain types of linear
systems it is possible to measure their input while simultaneously identifying their
input-output relation (cf. Hiibner, 1989a, 1986b).

Testing whether or not such infinte structures are empirically valid faces the same
problems as other theorems formulated for infinite sets, Such theories are idealiza-
tions and in this form not empirically testable. Empirical applications would have
to rely on finite-components structures like the n-component structures considered
by Krantz et al. (1971) and on standard methods for testing axioms of conjoint
measurement theory. Krantz er al. (1971) formulated a stationarity condition for
r-component structures which is extended here for infinite component structures.
They also provide another interesting and less strong condition, a standard sequence
condition. One way to relate n-component and inflinite component structures is by
assuming that for the latter only » components are essential.

Testing the additional conditions of Theorem 3 is also not possible in the strict
sense. Both polynomial growth and A < p, are asymptotic concepts that cannot be
verified of falsified by data. One can, however, determine m (a) and n,(a) for some
indices N and try to “guess” the behavior of |my(a)|""Y and |#,(a)|™. In this
respect Lemma 1 is useful.

However, it should be pointed out that for obtaining general theoretical deriva-
tions concerning the representation of dynamic behavior, n-component structures
are too restrictive because they require fixing the number of components. This is,
for instance, insufficient for connecting conjoint structures with linear system
theory.
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