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This article presents and tests the authors’ integration hypothesis of global/local processing, which
proposes that at early stages of processing, the identities of global and local units of a hierarchical
stimulus are represented separately from information about their respective levels and that, therefore,
identity and level information have to be integrated at later stages. It further states that the cerebral
hemispheres differ in their capacities for these binding processes. Three experiments are reported in
which the integration hypothesis was tested. Participants had to identify a letter at a prespecified level
with the viewing duration restricted by a mask. False reporting of the letter at the nontarget level was
predicted to occur more often when the integration of identity and level could fail. This was the case.
Moreover, visual-field effects occurred, as expected. Finally, a multinomial model was constructed and
fitted to the data.

Object perception is a complex task for the human visual sys-
tem. Accordingly, the investigation of object perception comprises
various aspects. For instance, because most objects in our envi-
ronment are organized hierarchically—that is, lower level objects
(e.g., hands, arms, legs) are nested within higher level objects (e.g.,
bodies)—one aspect concerns the relation between the perception
of the whole and its parts. Does the visual system process lower
level units first and then construct higher level units, as the
Structuralists (e.g., Wundt, 1874) assumed? Or is the global shape
of an object perceived first and then parsed into its local compo-
nents, as the Gestalt psychologists (e.g., Wertheimer, 1922, 1923)
proposed? This question is still in dispute (e.g., Sanocki, 2001).

Another aspect concerns the fact that objects usually consist not
only of wholes and parts but also of features such as form, color,
movement, and so forth. We know from neurophysiology that
some of these features are processed in specialized areas in the
brain (e.g., Livingstone & Hubel, 1988; Zeki, 1978, 1993). This
implies that at some stage of processing, the features are repre-
sented separately in the mental system. Consequently, they have to
be integrated at some stage for construction of a mental represen-
tation of the whole object. This is the so-called binding problem
(Treisman & Gelade, 1980).

In some sense, the two aspects of object perception just men-
tioned are related. Often, the low-level and high-level units of an
object are also regarded as local and global features of that object,
respectively, and it has been investigated, for instance, whether

these features are processed in succession or in parallel. Moreover,
as for other features, it has been suggested that global and local
features or units are processed in different channels or pathways in
the brain. It has even been proposed that they are processed in
different cerebral hemispheres (for overviews, see Van Kleeck,
1989; Yovel, Yovel, & Levy, 2001). In this case also, a distributed
processing would require the integration of global and local units
in order to obtain a complete object representation. However, in
the global/local research considered here, not much attention has
been paid to this integration. Rather, the processing of individual
features and their order or relative strength have been of interest,
whereas the question of how whole objects are represented has
largely been neglected.

However, as is shown in the present article, distributed process-
ing and binding play an important role even if consideration is
restricted to the individual processing of global and local units. In
a series of experiments and by means of multinomial models we
demonstrate in this article that, at least under certain circum-
stances, the units are processed and represented independently of
their levels at an early stage of processing. Consequently, a bind-
ing process is required in order to link the units to their respective
levels. Furthermore, we hypothesize that the cerebral hemispheres
differ with respect to this integration process. We contrast this
binding hypothesis with what we call the standard view. In this
view, global and local features are processed in different streams
or channels and, therefore, are uniquely related to their respective
levels. In other words, the standard view assumes that level infor-
mation and its content are coded in combination. Although this
assumption has been explicitly formulated by only some research-
ers (e.g., Lamb & Yund, 1996; Robertson, 1996), it seems to
represent one of the core assumptions in almost all theories of
global/local processing.

Before we present our alternative model in detail and its sup-
porting data, we provide an overview of the relevant literature. We
have tried to integrate the different aspects of the research into a
coherent theoretical framework in order to illustrate the standard
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Hübner, Universität Konstanz, Fachbereich Psychologie, Fach D29,
D-78457, Konstanz, Germany. E-mail: ronald.huebner@uni-konstanz.de

Journal of Experimental Psychology: Copyright 2005 by the American Psychological Association
Human Perception and Performance
2005, Vol. 31, No. 3, 520–541

0096-1523/05/$12.00 DOI: 10.1037/0096-1523.31.3.520

520



view and its shortcomings. First, however, we describe the stimuli
and tasks usually applied in global/local studies.

Stimuli and Tasks in Global/Local Studies

An example of the stimuli usually used in global/local studies is
shown on the left in Figure 1. It consists of a compound letter
whose global letter H is constructed from identical local letters E.
Although any symbols can be used as forms, letters were chosen in
most cases. Such stimuli were introduced by Kinchla (1974) but
were first systematically applied in the investigation of global/
local processing by Navon (1977).

Because the aim of most global/local studies was to investigate
perceptual processes, the effects of various stimulus parameters
were examined. However, these effects cannot be observed di-
rectly. Therefore, observers have to perform a task and to produce
overt responses, which can then be used to test specific hypotheses
about the perceptual processes. Consequently, any conclusion
drawn with respect to the investigated perceptual hypotheses is
based on the whole task (see also Kimchi, 1992; Ward, 1983).
Despite this fact, little attention has been paid to the effects of task
parameters.

To consider a typical global/local procedure, assume that letters
are used as units. A frequently applied task is then the speeded
classification of the letter at a prespecified target level. Categories
are usually defined by a mapping of the letters onto specific
responses. For instance, if there are two letters, then one letter
might require a left-button press, whereas the other requires a
right-button press. With a single letter in the display, classification
is usually an easy task. After some training, each letter automati-
cally triggers its associated response. However, for compound
letters, in which two letters are presented simultaneously, the
situation is more complex. In this case, the two letters of a stimulus
can be mapped onto different responses. Therefore, to select the
correct response for such incongruent stimuli, the target level must
be taken into account. This is not necessarily the case for congru-
ent stimuli, that is, stimuli in which both letters are mapped onto
the same response.

If there are only two letters in the letter set, then congruency
implies that the letters at both levels are identical. To avoid this
confound, one can use more than two letters. Moreover, in order to
obtain a baseline for the congruency effects, one can also use
neutral symbols as units for the nontarget level.

Relative Level Strength

By applying such a procedure, Navon (1977) observed that
global letters were identified faster than local ones. Moreover, the
congruency effect, that is, the latency difference between re-
sponses to incongruent and congruent stimuli, was larger for
responses to local units than for those to global units. From this
global advantage, Navon concluded that global features are pro-
cessed first by early perceptual mechanisms. However, later stud-
ies showed that the global advantage is not a general phenomenon
but depends on various stimulus factors such as spatial uncertainty
(Grice, Canham, & Boroughs, 1983; Lamb & Robertson, 1988),
stimulus distortion (Hoffman, 1980), size ratio (Kinchla & Wolfe,
1979), local density (Martin, 1979b), retinal position (Lamb &
Robertson, 1988), and exposure duration (Paquet & Merikle,
1988). Accordingly, one can also easily produce a local advantage
(e.g., Hoffman, 1980; Lamb & Robertson, 1988).

These results suggest that the advantage of a certain level does
not depend on a single mechanism. Accordingly, relatively soon
after Navon’s (1977) seminal article appeared, several researchers
proposed that attention also plays a role (e.g., Boer & Keuss, 1982;
Hoffman, 1980; Miller, 1981; Ward, 1982). For instance, Miller
(1981) assumed that response selection proceeds by a continuous
evidence-accumulation process and that each response is repre-
sented by a corresponding evidence counter. When one of the
counters exceeds a certain threshold, the corresponding response is
triggered. He further assumed that attentional processes bias the
input from the different sources into the counters. Because Miller’s
model is rather general, we have adopted its basic assumptions as
a theoretical framework in order to interpret the different empirical
results and to introduce our own view.

For performance in global/local tasks, it can be assumed that the
units at both levels feed simultaneously into the evidence-
accumulation process (Boer & Keuss, 1982; Hoffman, 1980;
Miller, 1981), even though at different rates. The difference be-
tween the rates depends on various factors. As we have seen,
stimulus parameters affect evidence accumulation in favor of one
or the other level. However, because performance has to be goal
directed, response selection cannot rely on pure stimulus-driven
evidence accumulation. If this were the case, dominant units would
almost always determine the response. Therefore, in order to
respond to the units at a certain level, the respondent has to process
the information of this level preferentially. Indeed, that partici-
pants can deliberately extract information from one level at the
cost of the other level has been shown by so-called attention
operating characteristic curves (Kinchla, Solis-Macias, & Hoff-
man, 1983; Ward, 1985). The observed curves are compatible with
a simple binary-mixture model, in which it is assumed that the
participants choose between two attentional strategies optimal for
selecting information from the global or local level, respectively.
Further evidence for attentional strategies has been provided, for
instance, by cuing effects (Lamb, Pond, & Zahir, 2000; Robertson,
Egly, Lamb, & Kerth, 1993; Stoffer, 1993).

Figure 1. The pattern on the left depicts an example of the hierarchical
letters used as stimuli. The pattern on the right shows the mask used for
disrupting stimulus processing.
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These attentional strategies might be realized by biasing the
different input sources in favor of the target level. A specific
mechanism for controlling the input is filtering. For instance,
absolute physical stimulus attributes can be used to select certain
information (Broadbent, 1958). In global/local research, two such
attributes have mainly been considered: size and spatial frequency.

The Use of Physical Stimulus Attributes

Because in many cases local and global units differ in absolute
physical size, a possible filtering mechanism might be spatial
attention (Lamb & Robertson, 1988; Stoffer, 1993) or regional
selection (Robertson et al., 1993). On the basis of covert spatial
orienting by means of an attentional spotlight (Posner & Cohen,
1984), it has been assumed that spatial attention can also operate
like a zoom lens (Eriksen & St. James, 1986). This hypothesis has
been supported by electrophysiological studies (e.g., Heinze, Hin-
richs, Scholz, Burchert, & Mangun, 1998; Müller & Hübner, 2002)
as well as by imaging studies (e.g., Sasaki et al., 2001; Weber,
Schwarz, Kneifel, Treyer, & Buck, 2000). Thus, it seems that by
adjusting the diameter of the attentional zoom lens, one can bias
the evidence-accumulation processing in favor of one or the other
level. However, like the position of the spotlight, the diameter of
the zoom lens is not always under voluntary control. Rather, abrupt
stimulus onsets determine the diameter automatically in favor of
the global unit. This view is supported by a study in which the
global advantage was eliminated by applying offset stimuli (Stof-
fer, 1994). On the other hand, the salience of the local units can be
increased, for instance, by coloring some of their exemplars (Han,
He, Yund, & Woods, 2001; Hübner & Malinowski, 2002).

Another physical and absolute attribute that often differs be-
tween global and local units is their spatial frequency content
(Broadbent, 1977; Shulman, Sullivan, Gish, & Sakoda, 1986).
Because it is known that low and high spatial frequencies are
transmitted with different speeds in the visual system (Breitmeyer,
1975; Michimata, Okubo, & Mugishima, 1999; Tolhurst, 1975)
and that there is also an asymmetric inhibition between the corre-
sponding channels (Hughes, 1986), it has been proposed that
differences in spatial frequency processing are responsible for the
global advantage (cf. Hughes, Nozawa, & Kitterle, 1996). Further-
more, spatial frequencies have also been related to attention. On
the one hand, low spatial frequencies seem to be processed preat-
tentively and to serve as an early warning system (May, Gutierrez,
& Harsin, 1995). On the other hand, attention can be voluntarily
focused to specific spatial frequency channels (e.g., Hübner,
1996a, 1996b). Therefore, it seems that spatial frequencies are
suitable for selecting units at a certain level (Ivry & Robertson,
1998; Robertson, 1996). However, in several studies, Lamb and
Yund (1993, 1996, 2000) showed that such a selection does not
depend on spatial frequency differences. Altogether, these results
suggest that spatial frequencies might be used for the selection of
local or global units. However, if this is not possible, because, for
instance, the spatial frequency content is not sufficiently different
between the units, then size or other discriminating features might
be used.

Thus, a possible model that could account for the reported
results is relatively simple. Information extracted from either stim-
ulus level feeds simultaneously into an evidence-accumulation
process. The relative contributions of the levels depend on

stimulus-driven as well as intentional factors. Goal-directed be-
havior is accomplished by means of an attentional mechanism that
adjusts early filters in such a way that the units at the target level
primarily feed the counters and, consequently, determine the
response.

Limits of Physical Stimulus Attributes

Even though many data can be explained by such a simple
account, it is not sufficient to explain all the data. This is because
early filtering is not effective in all cases. Presumably, it is effec-
tive only if the stimulus position and the target level are fixed. In
this case, it is easy to adjust the zoom lens or to bias other early
filtering mechanisms in such a way that only the information of the
target units feeds into the evidence-accumulation process. How-
ever, in other conditions, filtering by means of absolute stimulus
attributes is not sufficient or at least is suboptimal. The main
problem is that the attentional adjustments or task sets are not fully
under voluntary control. For instance, if the target level is random-
ized across trials and, consequently, observers frequently have to
shift from one task set to the other, the attentional adjustments are
suboptimal, which is reflected in increased congruency effects
(Hübner, 1997).

It can be assumed that the reduced performance under a variable
target level is due to the inertia of the attentional adjustments. This
assumption is supported by sequential effects, which were first
observed by Ward (1982). He found an improved performance on
trials in which the target level was the same as that on the previous
trial. Moreover, Ward showed that this level-readiness effect was
symmetric and was unaffected by spatial uncertainty, size of
stimuli, necessity to use name codes for stimuli, divided or unitary
attention to both levels or a particular level, and task (identifica-
tion, same–different, or visual search). Later studies added further
task (e.g., cue–stimulus interval, predictability, preparation) and
stimulus (e.g., location, identity, spatial frequency) parameters that
did not affect the level-readiness effect (Hübner, 2000; Lamb,
London, Pond, & Whitt, 1998; Lamb & Yund, 2000). To account
for his results, Ward (1982) proposed an attention switching/
sharing model in which the relative speed of information process-
ing at a given level depends on, besides the saliency of the features
at that level, the relative amount of attentional resources allocated
to that level. Moreover, he assumed that the processing at the
target level uses the allocated attentional resources but also shifts
the system to a state in which more resources are allocated to that
level for future processing (see also Ward, 1985).

Robertson (1996) proposed another idea to explain level-
readiness effects by assuming that the task set for responding to a
given target level—what she called attentional print—persists
over time and that, therefore, shifting from one task set to another
produces costs in response time. She further assumed that the task
sets consist of attentional weights for biasing certain spatial fre-
quency channels. However, this latter assumption could not be
confirmed (Hübner, 2000; Lamb & Yund, 1996). Therefore, Lamb
and his coworkers (Lamb et al., 1998, 2000; Lamb & Yund, 1996)
generalized the attentional print idea and proposed that sequential
effects are due to the persisting activation of level-specific neural
mechanisms. In essence, all ideas in this area are rather similar to
the more general models considered in research on task-set shifting
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(e.g., Allport, Styles, & Hsieh, 1994; Hübner, Futterer, & Stein-
hauser, 2001).

The Use of Relative Stimulus Attributes

A variable target level is only one example of how the efficiency
of early filtering can be reduced. There are other even more severe
conditions. For instance, if the stimulus is positioned randomly in
different areas of the screen, then it is difficult to adjust the zoom
lens optimally in advance (cf. Lamb & Robertson, 1988). Conse-
quently, it is likely that the onset of the stimulus automatically
attracts attention in favor of the global unit. In this case, early
filtering might not be sufficient for achieving the usually required
low error rate, at least for responding to local units. The case is
even more difficult when the absolute size of the units varies. Such
a variation is rather common in natural environments, where the
observer and/or the objects can move; the global units in one
moment can be of the same size as the local units in another
moment. Thus, the relation between size or spatial frequency and
level of an object is usually not constant.

However, even in cases in which early filtering is ineffective,
observers are nevertheless capable of performing global/local
tasks. This fact indicates that there are also other mechanisms that
allow observers to select the correct response. Rather than relying
on absolute physical features, these mechanisms presumably rely
on derived stimulus features. For instance, even if the absolute
features of the stimulus change, the relative hierarchical relations
between the units remain invariant. Therefore, such relative stim-
ulus attributes might also be used when the filtering of absolute
features alone does not work. Some evidence for this conjecture
has been provided by a study in which the absolute stimulus size
varied across trials (Kim, Ivry, & Robertson, 1999). It turned out
that level shift as well as size shift produced costs. This suggests
that absolute as well as relative stimulus attributes are used for
response selection.

These results show that the simple filter model outlined above is
inappropriate. However, how would it have to be modified in order
to cope with conditions in which early filtering alone does not
work? Ineffective filtering means that both local and global units
feed into the evidence-accumulation processes without much re-
striction. Consequently, dominant units almost always determine
the response, and reliable goal-directed behavior is impossible.
Therefore, to guarantee goal-directed performance even without
efficient filtering, further mechanisms are required. We assume
that these mechanisms utilize higher order representations. Up to
now, mental representations have not played an important role for
our simple filter model. The responses were merely represented by
counters. However, to develop a more sophisticated model, it
seems necessary to consider further representations. As in accounts
for the Stroop phenomenon (cf. MacLeod, 1991), we assume that
units such as letters automatically activate corresponding mental
representations and that these representations serve as a link be-
tween stimulus and response. For instance, a compound letter
activates corresponding letter representations, which in turn acti-
vate associated response counters. To adapt our simple model to
this extension, we assume that early filtering now affects the
activation of the letter representations. If it is effective, then the
most active letter representation can be allowed to determine the
response. Obviously, it is not necessary in this case to represent the

levels explicitly. The system trusts its filtering mechanism and
simply assumes that the most active letter stems from the target
level. However, the target level is represented implicitly by the
selection of the task set that controls the filtering in favor of that
level.

Now consider the case in which early filtering is not sufficient
for reliable performance. In this case, a useful representation of the
target level is required. The crucial question with respect to the
objective of the present article is whether this information is
already part of the letter representation, as the standard view
assumes, or not. Advocates of the standard view could simply
assume a further process that uses level information to select the
letter whose level feature corresponds to the target level. This is
possible because the letter representations also contain level infor-
mation. However, in contrast to the standard view, our integration
model assumes that early representations of the letters are rela-
tively abstract and do not contain level information. As argued
above, such abstract representations are sufficient if early filtering
works. However, if this is not the case, the active letter represen-
tations have to be integrated with the representations of their
levels. This results in representations that contain information
about levels and their content.

What evidence do we have for our integration model? The
model was originally derived from results collected in our studies
concerned with hemispheric asymmetries for global/local process-
ing (e.g., Hübner & Malinowski, 2002). For this reason, the
relevant results in this area and how they support the integration
theory are considered next.

Hemispheric Differences

It is widely assumed that the right and left hemispheres are
specialized for processing the global and local levels, respectively
(e.g., Ivry & Robertson, 1998). Evidence for this hypothesis comes
from different sources, such as studies with neuropsychological
patients (see Delis, Robertson, & Efron, 1986; Robertson & Lamb,
1991), response time studies (e.g., Hübner, 1997; Martin, 1979a),
electrophysiological (event-related potential, or ERP) studies (e.g.,
Heinze & Münte, 1993; Malinowski, Hübner, Keil, & Gruber,
2002; Proverbio, Minniti, & Zani, 1998; Volberg & Hübner,
2004), and imaging studies (e.g., Fink et al., 1996; Heinze et al.,
1998; Martinez et al., 1997).

However, there are also studies that did not find the expected
hemispheric asymmetries. This is particularly true for response-
time studies (e.g., Blanca-Mena, 1992; Boles & Karner, 1996; Van
Kleeck, 1989). In their overview, Yovel et al. (2001) even came to
the conclusion that the majority of studies with healthy participants
revealed no hemispheric asymmetries for global/local processing.
However, negative results can also be found in studies with pa-
tients (e.g., Lamb, Robertson, & Knight, 1989), in ERP studies
(e.g., Han, Fan, Chen, & Zhuo, 1997; Han, He, & Woods, 2000;
Johannes, Wieringa, Matzke, & Münte, 1996), and in imaging
studies (e.g., Fink, Marshall, Halligan, Frith, & Frackowiak, 1997;
Sasaki et al., 2001).

If we consider the electrophysiological and imaging studies,
even those studies that found asymmetries differed with respect to
the brain areas involved and the processing stages assumed. This
difference led to a dispute as to whether asymmetries occur in
areas reflecting early or late stages of processing. Some imaging
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studies support the idea that hemispheric asymmetries occur at
early stages (e.g., Fink et al., 1996), whereas others found evidence
for hemispheric asymmetries at later stages (e.g., Heinze et al.,
1998).

As for the global advantage, spatial frequencies have also been
used to explain hemispheric asymmetries (for an overview, see
Ivry & Robertson, 1998). For instance, Sergent (1982) proposed
that the cerebral hemispheres differ in their capacity to process low
and high spatial frequencies. However, at least for early perceptual
processes such as contrast sensitivity, there seem to be no percep-
tual differences between the hemispheres (Peterzell, Harvey, &
Hardyck, 1989). On the other hand, under conflicting stimulus
conditions, hemispheric asymmetries have also been observed with
compound gratings (Kitterle, Christman, & Conesa, 1993).

Taken together, the results with respect to hemispheric differ-
ences for global/local processing are inconclusive, which suggests
that the phenomena are not as simple and robust as assumed. The
results seem not to be invariant with respect to the different stimuli
and procedures that have been applied in this area. In the best case,
this indicates that asymmetries are real but difficult to observe.
They might show up only under certain but still unknown condi-
tions. Thus, an important endeavor is to determine the factors that
reliably produce hemispheric asymmetries. In the search for such
factors, various stimulus (e.g., Evert & Kmen, 2003) and task (e.g.,
Yovel et al., 2001) parameters have been manipulated with more
or less success. However, with respect to the present objective, an
interesting observation has already been made by Van Kleeck
(1989) in his meta-analysis. He found that hemispheric asymme-
tries occurred more often for incongruent than for congruent
stimuli. The positive effect of response conflicts for hemispheric
asymmetries was later confirmed by behavioral experiments (e.g.,
Hübner, 1998) as well as by two ERP studies (Malinowski et al.,
2002; Volberg & Hübner, 2004).

But how can congruency affect hemispheric asymmetries? Van
Kleeck (1989) assumed that each hemisphere is capable of pro-
cessing both local and global units but with different efficiencies.
Within our framework, one would say that evidence accumulation
proceeds at different rates depending on the visual field of stimulus
presentation and on the target level. There could be various reasons
for the different rates. Possible candidates are hemispheric differ-
ences with respect to feature extraction, early filtering, or feature
processing. To consider an example, assume that a stimulus is
presented in the left visual field and that the target level is local. In
this case, a suboptimal amount of information feeds from the target
level into the accumulation process. Moreover, it competes with
the optimally extracted and processed information from the non-
target (global) level. Both factors increase the duration of response
selection. However, if the target level is global, evidence accumu-
lation is optimal for the target level and competes little with the
suboptimal processed information at the nontarget (local) level.
Analogous reasoning can be applied to the other conditions. In
general, Van Kleeck assumed that the competition at the response
selection stage caused by incongruent stimuli leads to an amplifi-
cation of the hemispheric asymmetries.

A prediction of Van Kleeck’s (1989) amplifier hypothesis is that
the size of hemispheric asymmetries should covary, at least to
some extent, with the size of the congruency effect. However, in a
study by Hübner and Malinowski (2002), this prediction could not
be confirmed. Although hemispheric asymmetries showed up only

when there was a congruency effect, the degree of congruency was
relatively unimportant.

To explain this qualitative dependency of hemispheric asymme-
tries on congruency, Hübner and Malinowski (2002) speculated
that at an early stage of processing, letter identity was already
available but without level information, and that the hemispheres
do not differ in this respect. As argued above, for congruent
stimuli, the representation of letter identities is sufficient for a
reliable response selection. This explains why there are no hemi-
spheric asymmetries for this stimulus type. However, for respond-
ing to incongruent stimuli, the levels of the letters also have to be
taken into account. This requires the integration of letter and level
information at some stage, and it is at this stage that the hemi-
spheres differ. Consequently, hemispheric asymmetries can be
observed only when the binding of level and its content is neces-
sary. Thus, the integration hypothesis nicely explains why incon-
gruent stimuli are favorable in a qualitative way for hemispheric
asymmetries.

A Masking Procedure

Even if one agrees that our integration hypothesis makes sense,
up to now there has not been much supporting empirical evidence.
Although our results with respect to hemispheric asymmetries
support the hypothesis, the evidence is rather indirect. Further-
more, the interpretation of the results in favor of the integration
theory is based on various assumptions that might be questioned.
Therefore, we wanted to have a more direct test that was indepen-
dent of hemispheric asymmetries. Fortunately, researchers inter-
ested in feature integration have developed a useful method for
testing whether features are coded separately or in combination.
The idea is to disturb or interrupt the integration process by
masking. This produces different error types, which allow for the
testing of various hypotheses. For instance, if features are coded
separately at early stages and integration is prevented, then it might
happen that different features combine accidentally. As a result,
participants report so-called “illusory conjunctions” (Treisman &
Schmidt, 1982), that is, the perception of feature combinations or
objects that were not present in the display.

To test our integration hypothesis, we adopted the masking
procedure and adapted it to the global/local paradigm. If letters are
coded without level information, then observers should know the
letters’ identity before they know their level. Thus, if the letter at
a certain level has to be reported but the integration processes are
interrupted, then the letter at the other level should also be fre-
quently reported. Such conjunction errors should at least occur
more frequently than expected by the standard view, that is, when
level and letter identity are represented in combination right from
the beginning. The details become clear later when we introduce
multinomial models. In any case, although derived from response-
time data, our integration hypothesis is used to predict specific
patterns of errors collected in an unspeeded identification task.

However, even though we hypothesize a separate coding of
levels and letters, we do not assume illusory conjunctions in the
sense that observers see a letter at one level although it appeared
at the other level. For us it is sufficient to assume that binding
might fail and that the observers then have to guess.

Next, three experiments are reported in which the masking
paradigm was applied. In Experiment 1, the general method was
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established and the results were used to test predictions derived
from a simple multinomial model that reflects the standard view of
global/local processing. Experiment 2 served to exclude an alter-
native account. Finally, a more complex data set was collected in
Experiment 3 in order to fit a multinomial version of our integra-
tion hypothesis to the data.

Experiment 1

In this experiment, the participants had to identify a letter at a
prespecified level of a hierarchical stimulus. Each stimulus was
constructed from two of four different letters. In order to restrict
the processing of the stimulus and to produce a sufficient number
of errors, a mask (see right side of Figure 1) was presented shortly
after stimulus onset. The possible responses with this procedure
can be divided into three categories. First, responses are consid-
ered correct when the letter at the target level is reported, and these
are coded as T. Second, when the letter at the nontarget level is
reported, the responses are called “conjunction errors” and are
coded as N. Third, a report of one of the two letters not present in
the display is, following the tradition in illusory-conjunction re-
search, called a “feature error” and is coded as O or Ø,
respectively.

When a feature error occurs, then one can be relatively sure that
no letter was seen at the target level. However, given a correct
response, one cannot conclude that the letter at the target level was
seen. This is because correct responses can also result from guess-
ing. Thus, the actually interesting probabilities, such as the prob-
ability that the letter at the target level is seen, cannot be observed
directly. Fortunately, there exists a method that allows one to
estimate these probabilities. This method is based on multinomial
models (cf. Batchelder & Riefer, 1990) and has already been
successfully applied in illusory-conjunction research (Ashby, Prinz-
metal, Ivry, & Maddox, 1996; Prinzmetal, Ivry, Beck, & Shimizu,
2002). However, parameter values were estimated only in Exper-
iment 3. For the present experiment, testable predictions were
derived and tested. This was possible even without knowing the
exact parameter values.

Consider the multinomial processing tree diagram of the so-
called “null model” (see Figure 2), which illustrates how the
different response categories arise according to the standard view,

that is, under the assumption that levels and their contents are
coded in combination. It predicts that whenever a letter is identi-
fied, its level is also known. Each branch in the diagram symbol-
izes a specific event or a specific set of events, and the parameters
represent the probability of certain binary states. Here, the param-
eters t and n represent the probability that the letter at the target
level and the letter at the nontarget level are seen, respectively.
Thus, the event that the letter at the target level is seen has
probability t. If the observer is in this state, a correct response (T)
will occur. However, if one considers the other branches, it is
obvious that a correct response might also occur when the letter is
not seen. For instance, the probability that the letter at the nontar-
get level is seen but not the letter at the target level is given by the
product of the probabilities of these corresponding two events, that
is, by (1 � t)n. In this state, the observer has to guess the response
by randomly choosing a letter from the set {T, O, Ø}. Thus, with
probability (1 � t)n(1/3), a correct response is given in this
specific case. Finally, the total probability of a correct response is
simply the sum of all of the probabilities of the pathways leading
to the response T.

As can be seen, to utilize the multinomial methodology for our
ideas, we have to translate the continuous evidence-accumulation
models into models with discrete states. In the present case, it
seems plausible to assume that the parameter t reflects a counter
for the identity of the letter at the target level. If it exceeds a certain
threshold value, the letter is “seen.” The probability that this state
occurs depends, among other factors, on the efficiency of early
filtering.

In order to calculate the proportion of conjunction errors (N), let
us first assume that n (i.e., the probability that the letter at the
nontarget level is seen) is zero, which means that filtering is
perfect. When, for some reason, the letter at the target level cannot
be identified, the observers have to guess. In this case, each of the
four letters is chosen with probability 1/4. The choice of the letter
at the target level leads to a correct response, whereas the choice
of one of the other three letters produces an error. Consequently,
on error trials, each letter not at the target level will be reported
with a probability of 1/3. Because only one of these letters leads to
a conjunction error, this simple version of the null model predicts
that one third of the errors are conjunction errors.

This example shows that even without knowing the exact pa-
rameter values, it is possible to derive testable predictions from a
multinomial model. If we now make the reasonable assumption
that n is greater than zero, then even fewer conjunction errors are
expected. This results from the fact that when the letter at the
nontarget level is seen, it can be excluded from guessing, because
according to the standard view the observer knows that it did not
occur at the target level. However, because we do not know the
parameter values, we will simply test whether the proportion of
conjunction errors is greater than 1/3, which is a conservative test.

In contrast, our integration model assumes that letters and levels
are coded separately at early stages and, therefore, must be inte-
grated for the identification of the letter at the prespecified level.
When this integration process is disrupted, the letters in the display
might be seen without knowing at which level they occurred.
Therefore, it can be expected that the letter at the nontarget level
is falsely reported more frequently than either of the absent letters.
Consequently, if our hypothesis is correct, the proportion of con-
junction errors should be greater than 1/3.Figure 2. The multinomial processing tree diagram of the null model.
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However, our prediction holds only when the representations of
both stimulus letters are activated. Therefore, we have to ensure
that early filtering does not work very efficiently. Otherwise, the
observers would simply have to report the mostly activated letter.
Two measures were taken to make filtering difficult. One was the
introduction of spatial uncertainty. Because we also wanted to
investigate hemispheric asymmetries, stimulus position had to vary
anyway. In addition, we randomized the target level.

With respect to hemispheric asymmetries, let us first consider
the predictions of the standard view. According to the null model,
hemispheric asymmetries with respect to the identification of the
global and local letters are reflected by the individual parameters
t and n for each hemisphere. Let us first assume that n � 0. In this
case, only the parameter t differs between the hemispheres. As can
be seen by considering Figure 2, any variation of t affects con-
junction and feature errors to the same extent. To consider an
example, assume that the target level is global and that in this case
t � .8 for stimuli presented to the left visual field (LVF) and t �
.6 for stimuli presented to the right visual field (RVF). With these
parameters, we predict for conjunction errors corresponding rates
of [.25(1 – .8)] � .05 and of [.25(1 – .6)] � .1, respectively. The
rates for feature errors are .1 and .2. Thus, we expect twice as
many errors for RVF stimuli as for LVF stimuli. Now, assume that
n is greater than zero and that this parameter also differs between
the hemispheres. In this case, the null model predicts smaller error
rates and smaller visual-field (VF) effects. However, the reduction
of VF effects is greater for conjunction errors than for feature
errors. This is because n counteracts conjunction errors and differs
in the opposite direction between the hemispheres relative to t. If
we continue our example, but this time with n � .2 and n � .4 for
LVF and RVF stimuli, respectively, then the corresponding con-
junction error rates are now .04 and .06, whereas those for feature
errors are .093 and .173. This shows that the reduction of VF
effects is greater for conjunction errors. Thus, the null model
predicts the same relative VF effects for both error types, or even
smaller relative effects for conjunction errors.

According to our integration hypothesis, the hemispheres differ
with respect to their capacity for integrating level and letter iden-
tity rather than in their capacity for filtering or letter identification.
Therefore, we expect that VF effects are larger for conjunction
than for feature errors.

Method

Participants

Sixteen students (9 women and 7 men; mean age � 22.3 years) from the
Universität Konstanz, Germany, participated in the experiment. All had
normal or corrected-to-normal vision and were paid for their participation.

Stimuli and Procedure

Stimuli were hierarchical letters (see Figure 1). Each stimulus was
constructed from two out of four different letters (A, S, H, E). The size of
the global letters was 4.28° of visual angle horizontally and 5.89° verti-
cally. The respective size of the local letters was 0.71° � 0.93°. After the
presentation of a cue (the letter l or g to indicate a local or global target
level, respectively) for 300 ms and a subsequent blank interval of 300 ms,
the stimulus was presented for 24 ms in white on a black background either
to the LVF or to the RVF at an eccentricity of 3.03° (from the midline of

the screen to the center of the stimulus). VF and target level were random-
ized across trials. The stimulus–mask interval (SMI) was set to 96 ms at the
beginning of the experiment and then was individually decreased as soon
as a participant produced more than 70% correct responses in a block of
trials. The mask remained present on the screen until the response
occurred.

The task was to identify the letter at the cued level. Participants re-
sponded without time pressure by pushing one of four response buttons,
each of which corresponded to a certain letter. The button-to-letter map-
ping was varied across participants to counteract any response biases.
Participants were informed that each stimulus contained two different
letters and that when they were sure that they had only seen the letter at the
nontarget level, they should not report this letter but should randomly
choose one of the remaining letters, because reporting the seen letter would
produce an error. In addition, the participants received an auditory error
feedback. Altogether, there were 16 blocks of 48 trials for each participant,
which were run in a 1-hr session.

Results

The mean error rate was 37%. As can be seen in Figure 3,
feature errors occurred in about 16% of the trials, whereas con-
junction errors occurred in 22% of the trials. The rate of conjunc-
tion errors is significantly different, F(1, 15) � 73.4, p � .01, from
the prediction by the null model (the gray bars in Figure 3).

As is obvious if one considers Figure 3, neither the rate of
feature errors (local, 16.5%; global, 16.3%) nor that of conjunction
errors (local, 22.0%; global, 22.9%) differed between the levels.
However, there was a significant interaction in the expected di-
rection between level and VF, F(1, 15) � 16.2, p � .01, for
conjunction errors. When the letter at the local level had to be
reported, it was more likely for LVF stimuli than for RVF stimuli
that the letter at the global level was reported instead, whereas the
opposite held for the global target level (see Figure 4, left graph).
Although there was a similar trend for feature errors (see Figure 4,
right graph), the interaction did not reach significance.

Discussion

The aim of Experiment 1 was to test whether conjunction errors
(i.e., reporting the letter at the nontarget level instead of the letter

Figure 3. The percentage of conjunction and feature errors for global and
local target letters in Experiment 1. The gray bars indicate the predictions
by the null model.
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at the target level) occurred more often than predicted by the null
model. This model represents the standard view that letter and
levels are coded in combination. Thus, if a letter is perceived, its
level is also known. The results clearly show that this was not the
case. The number of conjunction errors largely exceeded the
number predicted by the null model. Whereas the null model
predicts 13% conjunction errors and 26% feature errors, we ob-
served 22% conjunction errors and 16% feature errors. This sup-
ports our hypothesis that letters and levels are coded separately at
early stages and that their integration takes place at later stages. If
the integration is disturbed or prevented by a mask, as in the
present experiment, then it is likely that on some trials the iden-
tities of both letters in the display are known but not the respective
levels. Consequently, the letter at the nontarget level might falsely
be reported, which produces a conjunction error. It also seems
plausible to assume that the same error type occurs when only the
letter at the nontarget level is seen but its level remains unknown.
Because the participants focus their attention at a certain stimulus
level, they expect that a single letter seen belongs to that level.
This produces the tendency to report that letter.

Also, with respect to hemispheric asymmetries, the null model
can be rejected. Contrary to its prediction, significant VF effects
were present only for conjunction errors. This, however, is in
accord with the integration hypothesis.

Thus, taken together, it seems that the present data strongly
support the integration hypothesis. However, before we can be
sure, we have to exclude a simple but compelling alternative
account. One might argue that the standard view is still valid but
that the participants confused the cues on some trials. Because the
target level was randomized, a cue was presented at the beginning
of each trial to indicate the relevant level. Thus, the possibility that
the participants confused the cue on some trials and, therefore,
falsely attended to the wrong level cannot be excluded. Conse-
quently, participants may have reported the letter at the nontarget
level, which would explain the increased number of conjunction
errors.

How many cue confusions can be expected under a randomized-
level condition? To obtain an estimate, we looked at the data of
Hübner and Malinowski (2002). Although the participants had to
produce speeded responses to unmasked stimuli in that study, the
conditions in the critical interval from cue presentation to stimulus

presentation were similar to those in the present experiment. That
is, there was a similar cue duration, there was a similar length of
the cue–stimulus interval, and there were even similar stimuli.
What is most important for the present objective, however, is that
in Hübner and Malinowski’s first experiment, two conditions were
realized. In one condition the target level was blocked, whereas it
was randomized in the other condition. For the blocked condition,
it is reasonable to assume that the number of cue confusions is
negligible (the error rate was 2.9%). Thus, if randomizing the
levels produces cue confusions, then the number of cue confusions
should be reflected by the difference in error rates between the two
conditions. Therefore, we compared the error rates for incongruent
stimuli (i.e., stimuli that contained two response-incompatible
letters) because only for these stimuli would a confusion produce
an error. It turned out that the error rate increased by 3.7%. Even
though this increase is certainly not exclusively due to cue confu-
sions, it still seems to be far too small to explain the relatively large
number of conjunction errors in the present experiment. This raises
the question of how many cue confusions would be necessary to
account for our result.

To answer this question, we had to extend the null model. For
this model, the processing tree shown in Figure 2 reflects the state
in which the correct level is attended. Let us assume that this state
occurs with probability c. Thus, with probability 1 � c the partic-
ipants are in the state in which they attend to the wrong level. In
this case a similar tree applies, but now T and N exchange their
positions in the tree. For simplicity, let us again assume that n �
0. The probabilities p(N) and p(O) of conjunction and feature
errors, respectively, can now be calculated by

p�N� � c�1 � t��1/4� � �1 � c�t � �1 � c��1 � t��1/4�

and

p�O� � c�1 � t��1/ 2� � �1 � c��1 � t��1/ 2�.

The probability p(T) for a correct response simply is 1 –
[p(N) � p(O)]. With these formulas we can search for the param-
eters c and t, given the probability p(T), or calculate the probabil-
ities p(N) and p(O) for certain parameters. For instance, if we
assume, according to our estimate above, that c � .96 (i.e., that
there are about 4% cue confusions) and search for the value of the
parameter t (the probability of identifying the letter at the attended
level) that produces the observed 61% of correct responses [i.e.,
p(T) � .61], then we find t � .51. However, with these parameters
we predict 14% conjunction errors and 25% feature errors. Thus,
this number of cue confusions hardly changes the prediction by the
simple null model. If we now search for the value of the parameter
c that predicts our data, we obtain c � .79. This value would
produce 22% conjunction errors and 17% feature errors (t is .67 in
this case). Thus, the participants would have had to confuse the
cues in 21% of the trials. Compared with the estimated proportion
of 3.7% cue-confusion trials in Hübner and Malinowski (2002),
this is a large number. Even if we concede that speeded-response
conditions might be favorable for reducing the number of cue
confusions, it is hard to see how this could account for such a large
difference. However, because we cannot definitively exclude the
cue-confusion account, we tested a prediction of the extended null
model in our second experiment.

Figure 4. The interaction between visual field and target level for the
conjunction errors (significant) and feature errors (not significant). LVF �
left visual field; RVF � right visual field; RH � right hemisphere; LH �
left hemisphere.
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Experiment 2

In our first experiment, we saw that the simple null model,
which represents the standard view of global/local processing,
cannot account for the data. However, if one additionally assumes
that the participants attended to the wrong level on a certain
number of trials, because they confused the cue, then the data
could be explained. Even though it is highly unlikely that these
trials occurred so frequently as would be necessary to account for
the large number of observed conjunction errors, this model cannot
be excluded yet. Therefore, our aim in the present experiment was
to test a specific prediction of the extended null model.

This test should be achieved by varying the SMI across trials. It
can be expected that the probability of identifying the letter at the
attended level (the parameter t in the model) increases with the
duration of stimulus availability. However, because this also ap-
plies to those trials on which the wrong level was attended, it
increases the number of responses that would falsely be interpreted
as conjunction errors. Given a sufficient number of cue-confusion
trials, this can even lead to an increasing number of conjunction
errors with increasing SMIs. On the other hand, according to our
integration hypothesis, the probability that the letters are bound to
their levels increases with the SMI. Consequently, we expected a
steeply decreasing rate of conjunction errors with increasing SMIs.
With respect to hemispheric differences, we expected the same VF
effects as in Experiment 1.

Method

Sixteen students (11 women and 5 men; mean age � 24.2 years) from
the Universität Konstanz participated in this experiment. All had normal or
corrected-to-normal vision and were paid for their participation.

The method was identical to that of Experiment 1 except that four fixed
SMIs (12, 24, 48, and 96 ms) were randomly chosen across trials. After
some training, 12 blocks of 96 trials were run in a single 1.5-hr session.
This resulted in 72 trials per condition.

Results

Conjunction Errors

The mean rate for conjunction errors was 21.6%. As can be seen
in Figure 5a, the rate of conjunction errors decreased with an
increasing SMI, F(3, 45) � 59.0, p � .01. Furthermore, as in
Experiment 1, there was a significant interaction between level and
VF, F(1, 15) � 12.0, p � .01 (see Figure 6). For the global target
level, the mean difference between the visual fields was 4.60%,
whereas it was 2.35% for the local target level. Also, the interac-
tion between SMI and VF was reliable, F(3, 45) � 2.83, p � .05.
For long SMIs, LVF stimuli produced fewer errors than RVF
stimuli, whereas there was no difference for short SMIs.

Feature Errors

The mean rate of feature errors was 21.4%. Also, for feature
errors the main effect of SMI was significant, F(3, 45) � 48.2, p �
.01 (see Figure 5a). In contrast to the results of Experiment 1, this
time the interaction between level and VF was reliable, F(1, 15) �
6.04, p � .05 (see Figure 6). For the global target level, the mean
difference between the visual fields was 2.21%, whereas it was
1.63% for the local target level.

Discussion

This experiment was conducted to test whether the standard
view of global/local processing can explain the relatively large
number of conjunction errors if it is additionally assumed that on
some trials the participants falsely attended to the wrong level
because of cue confusion. On these trials they reported the letter at
the nontarget level, which was falsely interpreted as a conjunction
error. The test was attained by varying the length of the SMI across
trials. Given that the probability of correctly identifying the letter
at the attended level increases with the SMI, the number of errors
that would falsely be interpreted as conjunction errors should also
increase relative to the prediction of the simple null model. De-
pending on the number of trials on which the wrong level was
attended, this can even lead to an increasing rate of conjunction
errors with increasing SMIs. On the other hand, our integration
hypothesis assumes that a longer period of time available for letter
and level integration should largely reduce the number of conjunc-
tion errors. The data clearly show that the rate of conjunction
errors decreased with increasing SMIs, which is in line with the
integration hypothesis.

To further examine whether the data could also be explained by
the extended null model, we fitted it to the data. We again set n �
0 (recall that this is to the advantage of the model) and estimated
the value of parameter c (the probability of attending to the cued
level) and the values of parameter t (the probability of identifying
the letter at the attended level) for each of the SMIs, respectively.
The estimation was accomplished by minimizing the deviation of
the model from the averaged percentage of correct responses
across the SMIs. As a result, we obtained c � .73. That is, cue
confusions would have had to occur in 27% of the trials. The
estimated values of the parameter t were .47, .56, .67, and .95 for
the individual SMIs, respectively. The corresponding predicted
rates of conjunction and feature errors are shown in Figure 5b. As
can be seen, the large number of necessary cue confusions, to-

Figure 5. The results of Experiment 2 and the predictions made by
different models: (a) The upper two curves show the conjunction errors
(Conj. err.) and feature errors (Feat. err.). The lower dashed curve depicts
the rate of conjunction errors predicted by the simple null model. (b)
Conjunction and feature errors as predicted by the extended null model.
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gether with the increasing probability of letter identification, leads
to an increase of conjunction errors by 4% across the SMIs. In
contrast to this prediction, these errors decreased by 10% in the
data.

If we would reduce the number of assumed cue confusions so
that their rate decreases with the SMI, then their number would
largely be underestimated, especially at short SMIs. At the ex-
treme, with c � 1, we would end up at the simple null model. For
comparison, we included its predicted number of conjunction
errors in Figure 5a. As can be seen, the simple null model largely
underestimates these errors. Thus, as these analyses show, there is
no reasonable way for the null model or for the extended null
model to explain our data.

With respect to hemispheric differences, VF effects occurred in
the expected direction for the conjunction errors. If we consider the
feature errors, then their rate was increased, compared with the
previous experiment. This might have contributed to the result that
this time reliable VF effects also occurred for this error type.
However, the rates were still smaller than those for the conjunction
errors. Interestingly enough, the VF effects for both error types did
not vary significantly with the SMI (see Figure 6).

Altogether, the two reported experiments clearly show that the
null model cannot explain the data. This suggests that on some
trials the identities of the stimulus letters were already known
before the information about their respective levels was available
and that, therefore, letters and levels have to be integrated at a later
stage. Because the assumption of an integration stage leads to a
more complex model of global/local processing than the standard
view, it would also be desirable to have a multinomial model of
this account. Such a model would not only help to interpret our
pattern of results, it would also offer the possibility of fitting the
model to the data and of estimating the parameters.

A multinomial model of the integration hypothesis needs, in
addition to the parameters t and n for representing the probability
that the letters at the target and nontarget levels, respectively, are
identified, two further parameters. One parameter, �, is required
for representing the probability that the target letter is correctly
bound to its level. The other parameter, �, represents the corre-
sponding probability for the letter at the nontarget level. However,
adding two parameters leads to a problem for fitting the model to
our data. Because we have only three response categories for a
given SMI and visual field, the relation between the number of
data points and the number of parameters is inappropriate. There-
fore, we had to conduct a further experiment in which the number
of response categories was increased.

Experiment 3

The participants in this experiment had, as before, to identify the
letter at a prespecified target level. In addition, however, a second
response was required in which they also had to identify the letter
at the nontarget level. Because we could now observe two re-
sponses on each trial, the number of response categories was
increased. We symbolize the two responses on a given trial by
presenting the corresponding pair of single response categories.
For instance, TN denotes the case in which the letter at the target
level is reported first and the letter at the nontarget level is reported
second; that is, both responses are correct. Accordingly, NT rep-
resents a double conjunction error. Actually, all 12 possible pairs
of the four different letters could occur. Letter repetitions were not
considered, because the letters within a given stimulus were al-
ways different and the participants knew that.

Thus, we have response pairs such as TN, NT, TO, TØ, and so
forth. However, because TO and TØ have the same a priori
probability, they were collapsed into one response category. By
applying this principle to all possible response pairs, we obtained
seven different response categories: {TN}, {TO, TØ}, {NT},
{NO, NØ}, {OT, ØT}, {ON, ØN}, and {OØ, ØO}. Each category
is denoted by its first member. For instance, the last category is
represented by OØ. For these different response categories, a
multinomial model was constructed that represents our integration
hypothesis. The result can be seen in Figure 7.

The relative frequencies for the different response categories
were registered not only for each VF and target level but also for
the different SMIs. This allowed us to examine how the parameters
change with the duration of stimulus processing. Because in the
previous experiment conjunction errors were relatively numerous
even at an SMI of 96 ms, here we included an additional SMI with
a duration of 192 ms.

Figure 6. The interaction between level and visual field for the feature
and conjunction errors in Experiment 2. LVF � left visual field; RVF �
right visual field; RH � right hemisphere; LH � left hemisphere.
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Although we do not discuss our model in detail before the
experiment and its results are reported, we consider one aspect
with regard to hemispheric asymmetries at this point. As can be
seen in Figure 7, the identification and the binding parameters are
related in a multiplicative way. Consequently, we cannot expect to
answer the question of whether identification or binding capacity
differs between the cerebral hemispheres simply by fitting the
model to our data. Either difference can be expected to explain the
data. Therefore, we needed independent evidence for our hypoth-
esis that the hemispheres do not differ with respect to their iden-
tification capacity. This should be achieved by including neutral
stimuli, that is, stimuli that have a letter only at the target level and
that have a neutral symbol at the nontarget level. If only one letter
is present, binding should not be necessary for producing a correct
first response. Therefore, if the hemispheres differ only with
respect to their binding capacity, no VF effects should occur for
neutral stimuli. On the other hand, if the hemispheres differ also or
exclusively in their identification capacity for global and local
letters, then VF effects can be expected.

Method

Sixteen students (9 women and 7 men; mean age � 22.5 years) from the
Universität Konstanz participated in this experiment. All had normal or
corrected-to-normal vision and were paid for their participation.

The method was similar to that in Experiment 2 except that an additional
SMI length was used. Thus, there were five different SMIs (12, 24, 48, 96,
and 192 ms). Furthermore, neutral stimuli were also presented. For these
stimuli, either a U or an inverted U occurred at the nontarget level. The

main difference from the previous experiment, however, was that the
participants, after reporting the letter at the target level (first response), also
had to indicate the letter at the nontarget level (second response). Because
this was possible only for nonneutral stimuli, an additional button with the
meaning “I’m not sure” could be pressed for the second response on a trial.
Moreover, auditory error feedback was given only for the first response on
a trial.

Altogether, there were 1,800 trials for each participant, which were
distributed across three 1-hr sessions. This resulted in 90 trials per condi-
tion per participant.

Results

Before performance with respect to the response categories is
reported, a standard data analysis is provided for the first and
second responses.

Target Identification (First Response)

Conjunction errors. The mean rate of conjunction errors was
11.3%. There was a significant main effect of SMI, F(4, 60) �
54.3, p � .01, reflecting that the rate of conjunction errors de-
creased from 16.1% to 6.19%. However, the two-way interaction
between level and SMI was also significant, F(4, 60) � 6.02, p �
.01, indicating that more errors occurred for the global than for the
local target level at short SMIs, whereas the opposite held for long
SMIs. The interaction between level and VF was also significant,
F(1, 15) � 7.93, p � .05. However, there was also a significant
three-way interaction among level, VF, and SMI, F(4, 60) � 4.02,
p � .01. As can be seen in Figure 8, this interaction indicates that
the two-way interaction between level and VF is absent at long
SMIs.

Feature errors. The average rate of feature errors was 10.7%.
As was the case for conjunction errors, there was a significant
main effect of SMI, F(4, 60) � 66.7, p � .01. The feature error rate
decreased from 18.3% to 5.03%. Further, the two-way interaction
between level and SMI was reliable, F(4, 60) � 3.45, p � .05. As
was true for conjunction errors, more feature errors occurred for
the global than for the local target level, but only for short SMIs.
Finally, there was a significant three-way interaction among level,
VF, and SMI, F(4, 60) � 1.92, p � .12. As can be seen in Figure 8,
the usual two-way interaction between level and VF was present
only at an SMI of 96 ms.

Neutral. The average error rate for neutral stimuli was 20.7%.
There were significant main effects for SMI, F(4, 60) � 39.1, p �
.01, and for level, F(1, 15) � 6.17, p � .05. However, there was
also a two-way interaction between these two factors, F(4, 60) �
10.7, p � .01. As was also true for conjunction and feature errors,
this interaction reflects the fact that the local level has an advan-
tage, but only at short SMIs. The error rate decreased from 38.4%
to 9.61% for the global level, and from 22.8% to 13.1% for the
local level. Most important, however, the interaction between level
and VF was far from significant, F(1, 15) � 0.032, p � .86. This
was also true for the three-way interaction among level, VF, and
SMI, F(4, 60) � 0.939, p � .45.

Nontarget Identification (Second Response)

Conjunction errors. On average, the rate for conjunction er-
rors was 17.0%. Only the main effect of SMI was significant, F(4,

Figure 7. The multinomial tree diagram of the integration model.

530 HÜBNER AND VOLBERG



60) � 15.1, p � .01. The error rate decreased from 23.9% to
9.28% (see Figure 9).

Feature errors. On average, there were 32.1% feature errors.
The main effect of SMI was significant, F(4, 60) � 48.7, p � .01
(a decrease from 41.9% to 19.3%), as was the main effect of level,
F(1, 15) � 4.58, p � .05. However, there was a significant
two-way interaction between level and SMI, F(4, 60) � 3.04, p �
.05, indicating that there were more errors for the global than for
the local target level, especially at short SMIs. Furthermore, the
two-way interaction between level and VF was significant, F(1,
15) � 11.7, p � .01. However, there was also a three-way
interaction among SMI, level and VF, F(4, 60) � 2.73, p � .05. As
can be seen in Figure 9, the typical VF effects were largest for the
medium range of SMIs.

Response Categories (Paired Responses)

The observed letter pairs were classified into the seven different
response categories. Because there were only a few letter repeti-
tions (1.42%), they were ignored. Presumably, they reflect error
corrections.

The relative frequencies of the response categories for the
different conditions are listed in Appendix A. Furthermore, the

data for four response categories are also shown in Figure 10.
These data are discussed in connection with the model fit.

Discussion

This experiment was primarily conducted to collect an appro-
priate number of response categories in order to fit a multinomial
model of our integration hypothesis to the data. This objective was
achieved by requiring not only the identification of the letter at the
target level but also the identification of the letter at the nontarget
level. However, the registration of two responses on each trial also
produced interesting results in itself. Although the task as a whole
was different from and presumably required different mental pro-
cesses than the task in the previous experiment, the results with
respect to the identification of the letter at the target level largely
replicated those of Experiment 2. There were again VF effects. For
the conjunction errors, however, VF effects were absent at the
longest SMI of 192 ms. For the feature errors, VF effects were
present only at an SMI of 96 ms. On average, the VF effects were
smaller for feature errors than for conjunction errors.

The performance with respect to reporting the letter at the nontarget
level was different. First of all, performance was reduced compared
with first-response performance. This finding indicates that attentional

Figure 9. The identification performance for the letter at the nontarget
level in Experiment 3. LVF � left visual field; RVF � right visual field;
RH � right hemisphere; LH � left hemisphere.

Figure 8. The identification performance for the letter at the target level
in Experiment 3. LVF � left visual field; RVF � right visual field; RH �
right hemisphere; LH � left hemisphere.
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filtering was involved and that response selection had a serial com-
ponent. Obviously, the participants shifted their attention from the
target level to the nontarget level. This explains why the identification
of the letter at the nontarget level was less successful than identifica-
tion of the letter at the target level, especially for short SMIs. More-
over, as can be seen in Figure 9, refocusing attention was more
difficult going from the local to the global level than vice versa. In
other words, zooming in was easier than zooming out, a phenomenon
already observed by Vorberg (1992).

Furthermore, for the second response, there were no VF effects
for conjunction errors, but there were substantial VF effects for
feature errors. However, these effects are presumably due to the
dependency between the responses. Thus, it seems that this com-
plicated pattern of results can only be interpreted by means of a
detailed model. As mentioned previously, our multinomial model
cannot be used to decide whether the hemispheres differ in their
capacity for letter and level binding or in their capacity for letter

identification. Therefore, neutral stimuli (with a letter only at the
target level and a task-irrelevant neutral symbol at the nontarget
level) were included in the experiment. Because identification, but
not integration, is necessary for these stimuli to produce a correct
response, we hoped that the corresponding results would help to
answer the question of how the hemispheres differ. Fortunately,
the results were clear-cut. There was not even a tendency of VF
effects for neutral stimuli. This finding supports our hypothesis
that the hemispheres differ with respect to their capacity for
binding the letters to their respective levels. With respect to the
identification performance for global and local letters, there seem
to be no hemispheric differences.

A Multinomial Integration Model

The number of response categories now allows us to fit the
multinomial version of our integration hypothesis, as shown in

Figure 10. The proportion of four out of seven response categories (symbols) and the corresponding perfor-
mance predicted by our integration model (lines). T � letter at the target level; N � letter at the nontarget level;
O � letter not present in the display. The first letter of the code for the response categories indicates the response
to the target level, which was required first. The second letter indicates the response to the nontarget level, which
was required second. For instance, TN means that both responses are correct, whereas NT means both responses
are conjunction errors. LVF � left visual field; RVF � right visual field.
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Figure 7, to the data. The parameters t and n represent, respec-
tively, the probability that the identity of the letter at the target
level is seen and the probability that the identity of the letter at the
nontarget level is seen. In this respect the model is similar to the
former model of the standard view. Here, however, we have two
additional parameters, � and �, representing the probability that
the identity of the letter at the target and the nontarget levels,
respectively, is correctly bound to its stimulus level. If we consider
Figure 7, then, the top branch of the tree diagram shows the case
in which both letters are perceived and integrated correctly. This
event occurs with probability t � n � � � � and leads to a correct
report of both letters (TN). However, if both letters are seen, it is
sufficient that only one is correctly bound to its level to produce a
correct order. This is because the unbound letter can only belong
to the other level. For instance, with probability t � n � �, both
letters are seen and the target letter is bound to its level. This
produces a correct response pair irrespective of whether the letter
at the nontarget level is bound. Analogously, a correct response
pair is also reported when both letters are seen but only the
nontarget letter is bound to its level. This event occurs with
probability t � n � (1 � �) � �. If the two letters of the stimulus are
seen but both remain unbound (the third branch from the top), then
the participants have to guess the letter order, that is, they have to
choose randomly between TN and NT. This situation occurs with
probability t � n � (1 � �) � (1 � �).

It might also happen that only one letter is perceived and that it
is bound correctly. This letter is then reported correctly, whereas
the letter for the other level has to be chosen from among the
remaining three letters. If only one letter is perceived and remains
unbound, one could assume that observers randomly choose one
letter pair from the set of all possible pairs that contain this letter.
However, it seems more reasonable to hypothesize that in this case
the perceived letter is reported first and the second letter is
guessed. In other words, if early filtering mechanisms are tuned to
a certain level and a single letter is seen, then it makes sense to
assume that it belongs to the attended level. In order to include
this strategy, we added a guessing parameter g to the model (see
Figure 7).

The tree diagram in Figure 7 shows all possible events. To
obtain the expected proportion for a certain response category, one
simply has to add the probabilities of the different events that
contain the corresponding response pairs. To provide an example,
consider the response category NO. Its predicted proportion is
given by adding the probabilities of Branches 8 and 10, that is,
(1 � t) � n � (1 � �) � g � (2/3) � (1 � t) � (1 � n) � (2/12).

Before we fit the model to our data, we consider the null model
for our double-identification paradigm. It is a special case of our
integration model. One simply has to assume that � � � � 1.
According to this model, conjunction errors can occur only when
none of the stimulus letters is seen. We can also derive testable
predictions from the null model. For instance, it predicts that the
two types of single conjunction errors, OT and NO, have the same
probability: (1 � t) � (1 � n) � (2/12). However, this does not
correspond to our data, as can be seen in Appendix A. If we
consider, for example, the proportions for the global level and the
LVF, then it is obvious that NO responses were about twice as
frequent as OT responses (.0481 vs. .0264), t(79) � 3.82, p �
.001.

To provide a further example, consider double conjunction
errors. The null model predicts that they occur with only half of the
probability just considered, that is, with probability (1 � t) � (1 �
n) � (1/12). However, this also does not correspond to our data (see
Appendix A). A test comparing NT with NO responses revealed
that there was no main effect but that there was an interaction with
SMI, F(4, 60) � 5.59, p � .001. At short SMIs, NT responses
occurred less frequently than NO responses (7.21% vs. 8.53%).
From the third SMI onward, however, NT responses were given
more frequently. For the longest SMI, the proportions are 4.47%
versus 1.38%. The time course for these response categories can
also be seen in Figure 10.

As these examples show, there are again many reasons to reject
the null model. Therefore, we now examine how successfully our
integration model explains the data. The model shown in Figure 7
was fitted to the data in order to estimate the different parameters.
If it is assumed that t, n, �, and � differ between the target levels,
VFs, and SMIs, we have four parameters for each of the seven
corresponding data points (response categories). However, be-
cause the data for the neutral stimuli and other results (Hübner &
Malinowski, 2002) support our hypothesis that the hemispheres do
not differ with respect to their identification capacities, the number
of parameters can be reduced by using the common parameters t
and n for a given level. Only the individual binding parameters �
and � were allowed to vary between the VFs. Thus, we had to
estimate two identification parameters (for a given target level)
and four binding parameters (two for each VF) in a single step
from the corresponding 14 data points for both VFs. The estima-
tion procedure was then run individually for each target level,
SMI, and participant.

Because it is reasonable to assume that the guessing parameter
g represents a global strategy, it was fixed across all conditions and
participants. After trying three different values for g, we set it to .9.
The other parameters were estimated by minimizing the goodness-
of-fit measure G2, which is defined as (cf. Prinzmetal et al., 2002)

G2 � �
i�1

m � �2 � f i
ob� ln�pi

ob

pi
pr�� .

In this formula, m denotes the number of response categories, fi
ob

the observed frequency, pi
ob the observed proportion, and pi

pr the
predicted proportion of response category i. The smaller the value
of G2, the better the fit. The function “fminsearch” from MATLAB
served as the algorithm for the minimization. To ensure that the fits
did not represent local minima, we used four different starting
values for each parameter.

The obtained mean parameters and corresponding goodness-of-
fit values, G2 and the sum of squared errors (SSE), are listed in
Appendix B. The corresponding predicted values for all seven
response categories are given in Appendix C. A sample of these
values is shown in Figure 10 together with the corresponding
empirical data. For the figure we chose the two response categories
with the largest proportion and the two response categories that
contained conjunction errors for the target level. As can be seen,
the fits are close to the observed data. Only those for the local
target level and RVF stimuli deviate to some extent from the data.

If we consider, as for the null model, the predicted values for NT
and NO responses (see Figure 10), then it turns out that they are
similar to the observed data. There is no significant main effect for
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the response categories, but there is a significant interaction with
the SMI, F(4, 60) � 3.76, p � .01. At short SMIs, fewer NT
responses are predicted than NO responses (at the shortest SMI,
7.10% vs. 7.56%). At longer SMIs, however, NT responses are
predicted to occur more often than NO responses (at the longest
SMI, 3.41% vs. 1.63%). This demonstrates that even such rela-
tively small effects are mimicked by the model.

To compare the goodness of fit of the integration model with
that of the null model, the latter was also fitted to the data. With its
four parameters (t and n for each VF), we obtained for each of the
14 data points an average G2 of 125 and an average SSE of .0553.
With six instead of four parameters (common t and n for both VFs,
one � and � for each VF), the integration model reached an
average G2 of 60.3 and an average SSE of .0252. Thus, the two
additional parameters produced not only a qualitative but also a
substantial quantitative improvement of the fit.

The comparison between the models clearly favors the integra-
tion model. The null model cannot describe the data. This supports
our hypothesis that letter identification and binding are two sepa-
rate and serial stages.

By considering the obtained parameters (see Appendix B), it can
be seen that the identification parameters t and n increase, as
expected, monotonically with the SMI. The values of t also mirror
the result that the local units had an advantage at short SMIs,
whereas global units were superior at long SMIs (compare the size
of t in the top half of Table B1 with that in the bottom half of Table
B1). The values of n are generally smaller than those of t. This
reflects early attentional filtering and suggests that the participants
first focused their attention to the target level and then shifted it to
the nontarget level. One could have expected the difference be-
tween t and n to decrease with the SMI because of the increasing
amount of time available for selecting information from the non-
target level. However, this seems to have been the case only for the
local target level. Furthermore, the difference between t and n is
generally larger for the local target level. Thus, the relations
between these parameters reflect our result that it was more diffi-
cult to shift attention from the local to the global level than vice
versa.

On the basis of our results for the neutral stimuli, we assumed
that the hemispheres do not differ with respect to letter identifica-
tion. Thus, t and n were held constant for both VFs. Consequently,
VF effects could be reflected only by the binding parameters. If we
consider the values in the bottom half of Table B1, then it is
obvious that, as expected, the binding parameter � for the global
target level is generally greater for LVF stimuli than for RVF
stimuli. The opposite should hold for the local target level, which
was the case for the three shortest SMIs (see Appendix C, the top
half of Table C1).

In contrast to the identification parameters, the values of the
binding parameter for the target level were not generally larger
than those for the nontarget level. This suggests that binding was
not affected by attentional focusing. Furthermore, the binding
parameters did not systematically increase with the SMI. Although
� increased to some extent for the global target level (see the top
half of Table B1), we had expected a more general increase with
the SMI. This result could indicate that binding is a relatively slow
and fragile process such that even 200 ms are not sufficient for
reaching a stable stimulus representation. However, it could also
indicate that the mask was crucial and destroyed the result of the

binding process to some extent irrespective of the SMIs. More-
over, the mask could even have a specific effect for each of the
SMIs. That is, depending on the state and stage of processing, it
could have a more or less negative effect. This could explain the
variability of the binding parameters across the SMIs.

Thus, although the obtained parameters were not as expected in
all respects, by and large they are compatible with our general
ideas about global/local processing.

General Discussion

Our aim in the present article was to examine the mechanisms
and structures involved in the processing of hierarchical stimuli.
Although this is an intensively investigated area, many questions
are still open. For instance, little is known about how the units at
a given stimulus level are selected and represented. Another ques-
tion concerns the involved brain areas. In what sense are the left
and right cerebral hemispheres specialized for processing local and
global units, respectively? If one considers the relevant literature
with respect to these questions, then one learns that the results are
inconclusive. One reason for the inconsistency might be the im-
plicit assumption in many studies that the involved processes are
relatively simple and robust. As a consequence, task parameters
vary considerably across studies, and little attention has usually
been paid to their possible effects.

Here, we have argued that even in relatively simple global/local
tasks, the involved perceptual and cognitive processes are rela-
tively complex and susceptible to minor experimental changes.
Therefore, because one can usually measure only the end product
of the whole processing, all components of the task and their
possible mental representations should be taken into account. This
could finally lead to more complete models for processing from
the stimulus to the response. In the present article, we adopted the
idea of evidence accumulation (Miller, 1981) as a theoretical
framework for describing the proposed mental structures and pro-
cesses. In a first approach, we assumed that there are mental
representations for the identities of the different stimulus units and
for the required responses, and that the relative activations of these
representations serve for response selection. For ambiguous stim-
ulus conditions, we hypothesized that attentional mechanisms ad-
just perceptual filters in such a way that the processing of the
different units is biased in favor of those at the target level. If this
filtering is effective, then the identity of the units is obviously
sufficient for a reliable response selection.

The Necessity of Binding Level and Its Content

The important question with respect to the objective of the
present study is how the system proceeds when early filtering is
insufficient. It seems inevitable that in this case, level information
has to be taken into account as well. However, how this informa-
tion is represented in the mental system is an open question. There
are two main alternative answers. One possibility is that level and
identity information are coded together right from the beginning.
This hypothesis was called the standard view, because we think
that this view is more or less explicitly shared by most of the
researchers in this field. The other possibility, proposed and fa-
vored by us, is that level and identity information are coded
separately at early stages. It follows from the latter hypothesis that
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identity and level information have to be integrated at some later
stage in order to obtain a complete stimulus representation.

Many authors in this area have not been precise about the
mechanisms underlying their theoretical views, and therefore it is
unclear whether they would really endorse the standard view as
presented here. Unquestionably, many researchers have remained
rather vague about their assumed mechanisms. Usually, they have
investigated specific problems such as the global advantage or the
properties of early filtering mechanisms, which can be examined
with minimal theoretical assumptions. However, researchers who
went further and proposed more detailed models usually ended up
proposing that the levels correspond to specific mechanisms in the
brain that process their content or features. This is most obvious in
theories that relate global/local processing to transient/sustained
channels (e.g., May et al., 1995), to low/high spatial-frequency
channels (e.g., Broadbent, 1977; Shulman et al., 1986), or to
magnocellular/parvocellular pathways (e.g., Michimata et al.,
1999). Corresponding ideas can also be found in the area of
hemispheric asymmetries for global/local processing (cf. Ivry &
Robertson, 1998).

In all of these theories, each level is processed by an individual
mechanism, which implies that content is automatically related to
its level. The predominance of this view can also be seen by
considering one of the most detailed models in this area. It was
proposed by Lynn Robertson (1996), a leading theorist in this
field. In her flowchart (see Figure 4 in Robertson, 1996), global
and local information are separated from the beginning and pro-
cessed in independent spatial-frequency channels up to an identi-
fication stage.

Another leading researcher in this field, Marvin Lamb, proposed
together with his co-worker E. Yund a similar idea. They merely
substituted level-specific neural mechanisms (Lamb & Yund,
1996) for the spatial-frequency channels in Robertson’s (1996)
model. It is interesting that they also briefly considered the pos-
sibility that target identity is represented separately from target
level. After mentioning that Biederman and Cooper (1992) pro-
vided evidence that the mechanisms for representing object shape
are different from those for representing object size, Lamb and
Yund (1996) hypothesized that “it is possible that target identity
and target level are represented separately” (p. 372). However,
they instantly rejected this idea and favored their level-specific
mechanism hypothesis, because it “escapes this difficulty alto-
gether” (p. 372).

These considerations show that the standard view is more than
a straw man for the present article and in fact represents a core
assumption of at least the majority, if not all, of the current theories
of global/local processing. On the other hand, the idea that levels
and their contents are processed independently at early stages and,
consequently, have to be integrated at a later stage has never before
been considered a serious alternative. Only when we had difficul-
ties explaining our VF effects with the standard view did we come
up with the hypothesis that the identity of the units might be
available before the knowledge about their level (Hübner & Ma-
linowski, 2002).

To provide evidence for our integration hypothesis, we con-
ducted three experiments with compound letters for which we
adapted an experimental paradigm from the research area of illu-
sory conjunctions (cf. Prinzmetal et al., 2002). The task was to
identify the letter at a prespecified target level. However, the

duration of stimulus processing was restricted by a mask. We
hoped that on some trials this would provide sufficient time for
letter identification but not for binding identity and level informa-
tion. In these cases, letter identities and levels were expected to
remain unbound and to lead to a relatively high rate of conjunction
errors, that is, of false reports of the letter at the nontarget level.

Our integration hypothesis was contrasted with the standard
view of global/local processing, that is, with the assumption that
units and levels are coded in combination. According to this view,
knowing the identity of a stimulus letter implies that its level is
also known. Therefore, only a few conjunction errors should occur.
In order to obtain a quantitative prediction, we formalized the
standard view as a multinomial null model and calculated the rate
of expected conjunction errors. We then tested this prediction in
our first experiment. The results showed that there were consid-
erably more conjunction errors than predicted, which supported
our integration model.

In a second experiment, we varied the SMI in order to exclude
the alternative account that the conjunction errors in Experiment 1
were simply due to the participants confusing the cues and, con-
sequently, attending to the wrong level. If this had been the case,
an improved identification rate with increasing SMIs should also
have increased the number of conjunction errors. However, this
was not the case. Rather, the number of conjunction errors de-
creased with the length of the SMI. Thus, together, the results of
the first two experiments supported our hypothesis that letters and
levels are coded separately at early stages.

In order to fit the integration hypothesis to data, we translated it
into a multinomial model that differed from the null model by two
additional parameters. Thus, there were not only two parameters
for representing the identity of the letter at the target level and the
nontarget level, respectively, but also two parameters for repre-
senting their binding state. Because the number of data points
collected in the first two experiments were not sufficient for
applying the model, we conducted a third experiment in which the
participants had to identify not only the letter at the target level but
also the letter at the nontarget level. Relative to the first two
experiments, this third experiment increased the number of ob-
servable response categories from three to seven.

The resulting parameter values from fitting the model to the data
were in line with the observed results and largely reflected our
hypotheses. For instance, the values of the identification parame-
ters for the letter at the target level were generally larger than those
for the letter at the nontarget level. This reflects the result that the
performance for the target level was better than that for the
nontarget level and indicates that attention was biased in favor of
the target level at the beginning of a trial. In other words, the
participants did not distribute their attention equally across the
levels but first focused their attention on the target level and then
shifted it to the nontarget level.

As expected, the identification parameters also increased in size
with the duration of stimulus processing. However, unexpectedly,
this was not the case for the binding parameters. Rather, their
values varied relatively unsystematically across the SMIs. This
finding could indicate that the negative effect of the mask for the
binding process was different from that for the identification
process. It seems that the mask could destroy the result of the
binding process even at long SMIs. Moreover, the data suggest that
the disrupting effect of the mask was particularly strong at some

535A THEORY OF GLOBAL/LOCAL PROCESSING



intermediate intervals. Presumably, these intervals correspond to
sensible stages of processing.

Thus, although not all of the obtained parameter values varied as
expected, by and large the multinomial model reflects our main
ideas rather well.

Abstract Representations of Level and Content

Altogether, the data and the model fit provide strong evidence
for our integration hypothesis, that is, for the idea that the identities
of the units of a hierarchical stimulus are coded separately from the
information about their levels at early stages of processing. This
demonstrates that questions about how stimuli are represented and
how these representations are used for executing the required task
are important for explaining performance. Our results indicate that
the early stimulus representations are relatively abstract. This
explains why it was obviously so difficult for our participants to
decide whether a letter occurred at one or the other level even
though global and local letters differed in various respects such as
size and number. It can be assumed that at early stages, letter
identity was represented as an isolated property. This assumption
is compatible with the feature integration theory (e.g., Treisman,
1998), which states that all that is available before binding takes
place is evidence about the presence or absence of features, not
evidence about their individual instantiations.

If we formulate these ideas within the framework of evidence
accumulation, we can say that there is one evidence counter for
each relevant letter identity. The process that registers the evidence
for the presence or absence of a given letter is not necessarily
aware of the origin of this evidence, that is, of the sources that
activated the respective evidence counter. Thus, at early stages, the
system might have evidence about the presence of a certain letter
in the display, but it knows neither its number and size nor the
level at which it occurred. All of this additional knowledge de-
pends on integration processes at later stages. The representation
of levels can be conceptualized in a similar manner. They might
also be represented rather abstractly at early stages. As for letters,
it can be assumed that evidence counters at early stages merely
signal the presence or absence of a level for a given stimulus.

Hemispheric Differences

An important part of our integration hypothesis is the assump-
tion that the hemispheres are equivalent with respect to letter
identification but differ in their capacities for integrating identity
and level information. This idea was originally developed in a
former article (Hübner & Malinowski, 2002) and is in line with the
older notion that functional hemispheric asymmetries reflect dif-
ferences at higher stages rather than at lower ones (cf. Moscovitch,
1979). The results obtained in the present experiments further
support this hypothesis. In all three experiments, there were VF
effects in the expected direction for conjunction errors. Similar but
smaller effects also showed up for feature errors, at least in the last
two experiments. Because the different error types are not inde-
pendent of each other, corresponding VF effects alone are not
suited for deciding how the hemispheres differ. Unfortunately, the
multinomial model did not resolve this issue either. Because the
identity and binding parameters are combined in a multiplicative
way, the model cannot be used to decide whether the hemispheres

differ with respect to identification, binding, or both. Therefore, in
order to obtain other information for answering this question, we
also included neutral stimuli in Experiment 3. Because these
stimuli had a letter only at the target level and a neutral symbol at
the nontarget level, the response could in principle be selected by
using identity information alone, without any binding. Thus, ac-
cording to the integration hypothesis, there should be no hemi-
spheric differences for neutral stimuli. This was precisely the case.
On the basis of this result, the number of parameters in the model
was reduced by using identical identification parameters for both
VF conditions. Only the binding parameters were allowed to
differ. As a result, the parameter values obtained by fitting the
model to the data differed between the two VF conditions in the
expected direction.

Altogether, our results support the hypothesis that the hemi-
spheres differ in their binding capacities rather than in their iden-
tification capacities. A recent patient study provides further evi-
dence for this conjecture. Doricchi and Incoccia (1998) examined
a patient with damage to the right hemisphere of the brain. She had
no problems seeing the global shape as long as there were no
relevant local shapes. Thus, her identification performance was
still intact, but her binding capacity seemed to be reduced. How-
ever, one might argue that the hemispheres differ in their identi-
fication capacities but only if there is competition between the
levels. Although we cannot definitively rule out this account, given
our pattern of results it is obvious that the integration hypothesis is
not only more precise and elegant but also more parsimonious.

Generality of the Results

An interesting question with respect to the present results is
whether the stimuli used are special. The compound-letter stimuli
used here and in most other global/local studies belong, according
to Pomerantz (1981), to the class of Type P objects. For these
objects, only the position of the local units matters for the identity
of the global unit. Moreover, all of the local units are identical. In
natural environments, hierarchical objects are usually Type N
objects, that is, they consist of different local elements whose
position as well as nature matter for the identity of the object (cf.
Pomerantz, 1981). However, Type P stimuli have generally been
preferred for experimental studies, because the identity of one unit
can be changed without seriously affecting the identity of the other
unit. Moreover, the same identity can be used for local as well as
for global units.

It is reasonable to assume that the properties of Type P stimuli
were helpful for obtaining our results. Also, the use of well-learned
letters as stimuli was presumably advantageous. It is likely that the
letters automatically activated associated mental representations
irrespective of their level. This clearly favored the separate coding
of units and levels. Thus, one might wonder whether the present
results can be generalized to Type N or more natural stimuli. We
think that the binding of levels and content is also necessary for
other stimuli. However, it might be more difficult to observe,
because semantic knowledge about objects can usually be used to
resolve ambiguities. Assume, for instance, that a picture of a
human body is presented very briefly and then masked. If one sees
a hand, then, even if it remains unbound, one simply knows that it
is a local part of the body. Thus, although Type P stimuli are
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special, they allow one to uncover a common phenomenon, which
can hardly be observed with natural stimuli.

Finally, given our method and the close analogies between our
results and conclusions and those found for other binding phenom-
ena, one might wonder whether there were also illusory conjunc-
tions between levels and letters. Although we do not exclude this
possibility, because our model fitted the data sufficiently well
without assuming illusory conjunctions, we had no reason to
include such a hypothesis at this point.
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Appendix A

Observed Data for Experiment 3

(Appendixes follow)

Table A1
Proportions for the Different Response Categories in
Experiment 3 for the Global Target Level

Response
category

Stimulus–mask interval (milliseconds)

12 24 48 96 192

LVF stimuli

TN .384 .438 .533 .664 .729
TO .248 .263 .272 .222 .172
NT .074 .055 .045 .049 .035
NO .091 .084 .032 .018 .015
OT .054 .042 .021 .009 .006
ON .105 .090 .068 .031 .041
OØ .045 .027 .029 .009 .002

RVF stimuli

TN .405 .456 .570 .699 .761
TO .215 .207 .196 .160 .150
NT .089 .073 .060 .045 .034
NO .093 .100 .059 .022 .009
OT .046 .038 .031 .010 .004
ON .118 .092 .074 .060 .042
OØ .034 .033 .013 .004 .000

Note. LVF � left visual field; RVF � right visual field; T � letter at the
target level; N � letter at the nontarget level; O and Ø � letters not present
in the display. The first letter of the code for the response categories
indicates the response to the target level, which was required first. The
second letter indicates the response to the nontarget level, which was
required second. For instance, TN means that both responses are correct,
whereas NT means both responses are conjunction errors.

Table A2
Proportions for the Different Response Categories in
Experiment 3 for the Local Target Level

Response
category

Stimulus–mask interval (milliseconds)

12 24 48 96 192

LVF stimuli

TN .320 .412 .487 .619 .696
TO .362 .303 .277 .221 .182
NT .063 .083 .083 .040 .054
NO .090 .087 .057 .038 .012
OT .060 .033 .024 .013 .004
ON .067 .054 .051 .056 .049
OØ .037 .028 .021 .012 .004

RVF stimuli

TN .345 .395 .459 .593 .667
TO .360 .377 .344 .292 .206
NT .062 .064 .059 .035 .055
NO .067 .061 .049 .031 .019
OT .057 .036 .021 .014 .007
ON .062 .040 .053 .027 .042
OØ .047 .027 .015 .008 .003

Note. LVF � left visual field; RVF � right visual field; T � letter at the
target level; N � letter at the nontarget level; O and Ø � letters not present
in the display. The first letter of the code for the response categories
indicates the response to the target level, which was required first. The
second letter indicates the response to the nontarget level, which was
required second. For instance, TN means that both responses are correct,
whereas NT means both responses are conjunction errors.
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Appendix B

Parameters for the Integration Model
Table B1
Parameters and Goodness-of-Fit Values for the Integration Model for the Global and Local Target Levels

Parameter or
goodness-of-fit

measure

Stimulus–mask interval (milliseconds)

12 24 48 96 192

Global

t .573 .633 .762 .897 .926
n .454 .480 .547 .690 .751
�, LVF .406 .677 .640 .710 .790
�, RVF .377 .468 .593 .547 .770
�, LVF .616 .631 .633 .366 .499
�, RVF .566 .517 .581 .586 .596

G2 46.407 55.204 47.131 63.765 60.554
SSE .025 .023 .017 .018 .021

Local

t .647 .728 .794 .869 .901
n .288 .372 .481 .579 .711
�, LVF .537 .444 .474 .691 .659
�, RVF .617 .544 .559 .658 .453
�, LVF .492 .558 .458 .642 .561
�, RVF .635 .507 .583 .534 .655

G2 52.526 68.778 64.448 65.630 78.794
SSE .043 .032 .031 .018 .024

Note. LVF � left visual field; RVF � right visual field; SSE � sum of squared errors.
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Appendix C

Predicted Proportions for Experiment 3
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Table C1
Predicted Proportions for the Different Response Categories in
Experiment 3 for the Global Target Level

Response
category

Stimulus–mask interval (milliseconds)

12 24 48 96 192

LVF stimuli

TN .396 .456 .559 .704 .776
TO .225 .233 .232 .183 .144
NT .086 .059 .044 .041 .027
NO .080 .074 .042 .020 .012
OT .052 .042 .028 .010 .010
ON .118 .010 .074 .035 .025
OØ .044 .035 .021 .007 .006

RVF stimuli

TN .402 .439 .548 .702 .776
TO .221 .229 .230 .178 .144
NT .080 .076 .056 .043 .023
NO .082 .076 .043 .017 .010
OT .056 .047 .030 .015 .009
ON .115 .098 .073 .039 .027
OØ .044 .035 .021 .007 .006

Note. LVF � left visual field; RVF � right visual field; T � letter at the
target level; N � letter at the nontarget level; O and Ø � letters not present
in the display. The first letter of the code for the response categories
indicates the response to the target level, which was required first. The
second letter indicates the response to the nontarget level, which was
required second. For instance, TN means that both responses are correct,
whereas NT means both responses are conjunction errors.

Table C2
Predicted Proportions for the Different Response Categories in
Experiment 3 for the Local Target Level

Response
category

Stimulus–mask interval (milliseconds)

12 24 48 96 192

LVF stimuli

TN .360 .416 .502 .622 .722
TO .332 .310 .276 .243 .173
NT .061 .079 .074 .042 .037
NO .072 .056 .049 .024 .023
OT .056 .046 .031 .016 .008
ON .076 .062 .049 .043 .032
OØ .043 .032 .020 .011 .006

RVF stimuli

TN .363 .428 .517 .633 .713
TO .334 .312 .278 .243 .167
NT .058 .067 .059 .031 .045
NO .068 .057 .043 .030 .021
OT .054 .043 .029 .016 .014
ON .081 .061 .055 .036 .034
OØ .043 .032 .020 .011 .006

Note. LVF � left visual field; RVF � right visual field; T � letter at the
target level; N � letter at the nontarget level; O and Ø � letters not present
in the display. The first letter of the code for the response categories
indicates the response to the target level, which was required first. The
second letter indicates the response to the nontarget level, which was
required second. For instance, TN means that both responses are correct,
whereas NT means both responses are conjunction errors.
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