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Abstract. Inferior human signal-detection behavior
compared with that of ideal observers has been explained
by intrinsic uncertainty of the human observer with re-
spect to certain signal parameters. One way to model this
uncertainty is to assume that the observer simultaneously
monitors multiple channels, corresponding to possible
parameters. However, it is also conceivable to assume that
an observer, uncertain about which channel to monitor,
chooses a suboptimally tuned single filter. Finally, uncer-
tainty may also cause the filter underlying a single chan-
nel to broaden. In this paper these different models are
investigated with respect to spatial-frequency uncertainty
for matched filters detecting Gabor signals. All three
mechanisms predict a decrease in detection performance.
However, it is shown that the resulting psychometric
functions are different. While the slopes increase with
uncertainty for the multiple-channel models, they de-
crease for a randomly chosen single channel. Broadening
a single filter leads to parallel psychometric functions.

1 Introduction

It is well known that signal-detection performance suffers
from randomly varying signal parameters, compared with
a situation with fixed parameters. Such an uncertainty
effect has been demonstrated in visual signal detection
for various parameters such as phase (Burgess and Ghan-
deharian 1984a), location (Swensson and Judy 1981;
Davis et al. 1983; Burgess and Ghandeharian 1984b), and
spatial frequency (Davis et al. 1983). This paper is con-
cerned mainly with spatial-frequency uncertainty.

Two classes of models have been proposed to explain
the observed uncertainty effects: multiple-band and single-
band models. Multiple-band models assume that ob-
servers simultaneously monitor several channels or
bands when they are uncertain about a signal parameter.
For instance, if the task is to detect a sinusoidal grating
with unknown spatial frequency, then it is assumed that
an observer monitors the output of multiple frequency-
specific filters or channels. Since this strategy increases
the number of false alarms, the decrease in detection
performance can be explained.

Single-band models, on the other hand, assume that
the monitoring capacity is limited to one channel at
a time. Here, when there is uncertainty about the spatial
frequency of the signal, the observer is assumed to switch
between different channels from trial to trial. Since this
strategy leads to inappropriately tuned channels in some
trials, a decrease in detection performance is predicted. If
it is further assumed that after a correct response the
observer does not switch to another channel, then se-
quential dependencies are also to be expected [see Swets
(1984) or Graham (1989) for more details].

Unfortunately, the empirical results are inconclusive.
While uncertainty effects were usually smaller than
predicted by the single-band models, sequential de-
pendencies were found (Davis and Graham 1981). Mul-
tiple-band models, on the other hand, predict the size of
the effect more precisely. However, they additionally pre-
dict a steepening of psychometric functions collected
under uncertainty which could not be confirmed for
spatial-frequency uncertainty (Graham 1989, p 303).

Single-band models play a further role in connection
with the so-called probe-signal technique. Experiments
employing this method also induce spatial-frequency un-
certainty, but with unbalanced presentation frequencies.
A primary signal with a certain spatial frequency is pre-
sented in the majority of the trials. In the remaining trials,
probe signals with different spatial frequencies are pre-
sented. Signal levels are chosen to produce equal detect-
ability in blocked presentations. Results obtained with
the probe-signal method show that the detectability of
the probes decreases with distance from the spatial fre-
quency of the primary signal (Davis and Graham 1981).
This is thought to reflect the tuning curve of the utilized
internal filter centered at the spatial frequency of the
primary signal.

This interpretation rests on the assumption that fre-
quent presentation of the primary signal is sufficient to
tune the utilized channel to the spatial frequency of that
signal. However, as has been demonstrated by Davis and
Graham (1981), the “tuning” depends on the proportion
of the primary signal. As the proportion increased from
80 to 95% tuning became sharper and more centered at
the primary spatial frequency. How can this result be
explained? Davis and Graham (1981) speculated that in
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the 80% condition additional spatial-frequency
channels were monitored and that only in the 90%
condition was a stationary single band employed.
However, it is also conceivable that in the 80%
condition the filter was not exactly tuned to the spatial
frequency of the primary signal at every trial and that
the increased proportion of the probes could have
led to filter jitter. That off-frequency looking can occur
in some situations has been shown, for example, by
Perkins and Landy (1991).

A third alternative is to assume that the employed
band is variable in width and that the 80% condition
induces the perceptual filter to broaden (Johnson and
Hafter 1980).

Thus far, so-called extrinsic uncertainty was con-
cerned, which is deliberately introduced by presenting
signals with random parameters to the observer. How-
ever, it is also believed that there is some intrinsic uncer-
tainty. This means that even if no extrinsic uncertainty is
present, human observers will never know the signal
exactly. In connection with multiple-band models this
assumption implies that even with constant signal para-
meters, observers always monitor more than one channel
simultaneously (Graham 1989).

Intrinsic uncertainty has also been used to explain the
performance difference between human and ideal ob-
servers. For instance, Pelli (1985) was quite successful in
explaining several phenomena of visual signal detection
by assuming a multiple-band ideal observer degraded
by intrinsic uncertainty. However, there are conceivable
alternative ways to model intrinsic uncertainty or to
explain the reduced detection performance of human
observers, compared with ideal observers, particularly, if
one assumes a single-band model. For such models it
would also be reasonable to establish intrinsic uncertain-
ty by assuming filter jitter or, alternatively, more broadly
tuned filters.

However, the effects of these alternative mechanisms
do not seem to be clear. Swensson and Judy (1981)
modeled inappropriate tuning by adding internal noise
to an ideal observer. Since ideal observers face only
external noise, adding internal noise would seem to be
a suitable method of degrading their performance
(Burgess and Colborne 1988). However, it will be demon-
strated that adding internal noise to model mistuning is
not adequate.

As has been shown, there are several occasions where
filter tuning seems to be important. However, we have
hardly any knowledge about the effects of filter mistun-
ing, except that it degrades detection performance, which
is insufficient in most cases to distinguish it from other
mechanisms. Since it is quite characteristic for the mul-
tiple-band models that the slopes of the psychometric
functions increase with the number of bands, it would be
desirable to consider psychometric functions of a ran-
domly tuned single band for comparison. In this paper
such psychometric functions are derived for ideal ob-
servers detecting sinusoidal and Gabor signals, degraded
by filter jitter.

Additionally, psychometric functions for ideal ob-
servers with increased bandwidth are provided.

2 Matched filtering in a 2IFC situation

Although visual signal processing is mainly concerned
with two-dimensional stimuli, we will consider only one-
dimensional signals. This makes the analysis much easier
while still obtaining relevant results.

Assume that the task is to detect a signal s(x) in given
input data i(x) which can be either noise n(x) or signal
plus noise, ie.,

i,(x) = s(x) + n(x)
i,(x) = n(x)

Assume further that the noise is a normal process, i.e.,
n(x) is distributed as N(0, Ny), and that the signal is
known exactly. The effectiveness of a detector depends on
the signal-to-noise ratio, i.e.,, the ratio between the value
s(xo) of s(x) at a certain point x, and the standard
deviation of the noise. This ratio can be increased if the
data are processed by a linear filter H whose output y(x)
with input i(x) is given as

a0

1 ,
y(x) = o _j I(w)H(w)e!**dw

= | i(uh(x — uydu
where h(x) is the impulse-response function of the filter
H(w) and I(w) is the Fourier transform of i(x).
It can be shown that a filter, maximizing the signal-
to-noise ratio, is given by (Papoulis 1984)

H(w) = kS*(w)e ~ /9%

where k is an arbitrary constant and S* denotes the
complex conjugate of S. Such a system is called a matched
filter for the signal s(x), because its impulse-response
function is h(x) = ks*(x¢ — Xx).

Because the signal-plus-noise input is a sum and the
filter is linear, we can also write its output as a sum:

y(x) = T s(wh(x — uydu + aj? n(u)h(x — u)du
=k cf s(u)s*(xg — x + wdu

+k T n(u)s*(xo — x + u)du

We assume that a detector in a 2IFC (two-interval
forced-choice) situation draws two samples, U and U,
corresponding to signal plus noise and noise alone and
chooses the interval containing the larger sample. This
behavior corresponds to a maximum-likelihood strategy.
The detector is correct if the larger sample is from the
signal-plus-noise distribution. Thus, the proportion of
correct detection is given by

P(C} = P{U,>U,} = | Fywfiu)du )

where F,(u) = {* _ f,(y)dy is the distribution function of
U, and f;(u) the probability function of Uj.



Fortunately, since i(x) is a normal process, so is y(x)
(Papoulis 1984). We will evaluate the mean and variance
of the noise-alone and signal-plus-noise distributions.

Since the maximum output of the filter is independent
of the position of the signal, we consider its performance
at xo = 0. For the noise-alone case one obtains as mean

E{yn(x0)} = _}) E{nu)}h(xo — uydu =0
and as variance (Papoulis 1984)

1 e o]
Var{y.(xo)} = 5= I L(w) |H(w)|* do

2 o
S T 1s* @ do

= k N()Es

The output of a matched filter for signal-plus-noise at
Xo 1s given by

ys(xo) = j (w)s*(uydu + k j n(u)s*(u)du

=kE, + k j' n(u)s*(u)du

where E, denotes the energy of the signal. Therefore, one
obtains as mean for the signal-plus-noise distribution

5{ys(xo)} = kEs
and as variance
Var{y,(to)} = k2 NoE,

An equivalent interpretation of the detector’s perfor-
mance is to say that its choice is correct if U; — U, > 0.
Since the two variables are normal, their difference is also
normally distributed. Thus, we get

1 2 u?
P{C}=®(z) = [ e”2du
,/27[ -
with
, E, d 2

The index of sensitivity, d’, represents the difference in the
means of the noise and signal-plus-noise distributions
divided by their common standard deviation:

E; E,
d’ = =

JNJE. N No

This differs from the result /2E,/N,, usually derived
for auditory signal detection, because we used two-sided
spectra.

3 Effects of filter displacements

Thus far we have considered the usual detection behavior
of a matched filter. In this section we will investigate the
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Fig. 1. Function Q,(4w). The solid curve corresponds to L = n/4 and
the dashed curve to L = n/2

effects of its mistuning. Therefore, we consider its output
in dependence on the amount of displacement:

1 < )
yi(x, Adw) = o { I{w)H(» + dw)e’*dw
n — a0

1 % )
=5, | S(@H(w + dw)e’*dw

No * .
+2 | H + dw)e™* do
2n
By noticing that the noise part is not affected by
a displacement and using the fact

1 = ' ‘

5 f H(w + Aw)e/* dw = h(x)e ~/4x
n — oo

we get for the signal part at x,

¥(xo, dw) = [ s(h(xo — u)e ~JAoxo— 1 dy

—

2]
= [ |su)|>e 4o dy
To describe the loss in effectivity of a suboptimal filter
we introduce a function Q which is one when optimality
is given. In the case considered here, we have optimality if
Aw = 0. Thus,

[2, Is@)|*e == dy

=, 6T du ®

Q(dw) =

3.1 Rectangular signals

Now let us specify a certain signal. Vander Lugt (1967)
has shown that the signal with

IsGO|? = 1, for 0<x<L
10, elsewhere

has the most rapid loss of performance for small values of
Aw. Applying this signal to (3) gives
sin(4dwL/2)

AwL/2

Figure 1 shows the function Q,(dw) for different
values of L. As one can see, the quotient drops faster for

0.(4w) =
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Fig. 2. Theoretical psychometric functions of a matched-filter detector.
The solid curves reflect a fixed filter. The dashed curves reflect normally
varying filters with standard deviations ¢ = 1 and ¢ =3, respectively

long signals. This is because the spectrum becomes nar-
rower for longer signals.

Next, we will apply this function to the ideal observer.
We assume that the filter position is fixed within a trial
but varies randomly from trial to trial (filter jitter). Spe-
cifically, we assume that the displacement is a random
variable Q, which is normally distributed with N (0, o).

(Aw)?
202

1 _
f(AC()) - \/277[0'6

The proportion of correct detection is now conditioned
on the displacement:

P(Cl= | P(CIQ = dw}f(4w)ddo @
where
P{C|Q = dw} = ¢[z,(4w)]
with
E;

2 (40) = 0(d0) |5

By applying (4) we can compute psychometric func-
tions for several values of L and o. Figure 2 depicts some
examples.

As one can see, introducing filter jitter shifts the
psychometric functions to the right, i.e., performance is
decreased. Additionally, the slopes of the psychometric
functions decrease when the variance of the filter dis-
placement increases.

3.2 Gabor signals

In this section we consider Gabor signals. The corre-
sponding matched filters are Gabor filters (Daugmann
1985) which are quite popular as models for visual recep-
tive fields. For convenience, we consider one-dimensional
Gabor signals which have the form

(x - x0)* .
glx —xo) =€ 2 efnT
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Fig. 3. Theoretical psychometric functions of matched Gabor filters.
The solid curves reflect a fixed filter. The dashed curves reflect normally
varying filters with standard deviations ¢ = 1 and ¢ = 3, respectively

The Fourier transform is given by

(0 — mo)?

G(w — wg) = +/2mne 27 g ~JXole = @o)

Here, 7 is the spatial standard deviation and t the
spatial-frequency standard deviation with 7 = 1/(27n).
For convenience, we again consider the case with xo = 0.
Applying this Gabor signal to (3) gives

x? )
[2 e yie Hexdx

Q,(dw) = .
© _x
j_ o e n? dx
Aw?n? (x — jdwn?)?
e 4 e n dx

® x
j.A [ dx
©

_ (don)®
=e "4

In this case the function Q, is exponential and there-
fore monotonically decreasing.
By applying (4) with

E;
zg(Aw) = Qg(Aw) 2N,
we can compute psychometric functions for Gabor sig-
nals with several values of # and ¢. Figure 3 depicts some
examples using Gabor signals covering equivalent areas
under their impulse-response functions as the rectangular
signals in Fig. 2.

As one can also see in this case, the psychometric
functions shift to the right, and the slopes decrease if the
variance of the filter position increases. However, the loss
is not as severe as with the rectangular filters.

4 Increasing filter width

In this section the effect of increasing the width of
a matched filter on signal detection performance is con-
sidered. We again use Gabor signals. For convenience we



let wy = 0, xo = 0, and T = 1 without restricting general-
ity. The model consists of increasing the filter width by
increasing the spatial-frequency standard deviation. This
is equivalent to scaling the space domain, i.e., multiplying
the coordinate x by a factor a, with a = 1, to get g(ax).
This narrows the signal and, consequently, increases the
width of its spectrum. For the signal part we can describe
the effectivity by

5 |a|I°° G(w)G(w/a)dw

1 . 2
ﬂj—w |G(w)|? dw

Ou(a) =

_ 2
TN ar+1

In contrast to shifting a filter in spatial-frequency
domain, in this case effectivity of the noise part is also
affected. Widening the filter increases the variance of the
output. Thus, we get for the noise part

%, 1G(o/a))* do

. 21t|a|2
Onla) ==
°j°° |G(@)|? dw
1 ., _e
I—“l"—zj_w azdw
j'fwe_“’zdw
_1
-a

Finally, combining both quotients with respect to our
decision variable z gives

2a

0u@= [

To compute psychometric functions (2) can be used.

However, instead of z we use Q,,(a)z. In log coordinates

this is simply a shift by a constant. Therefore, the psycho-

metric functions are parallel. In Fig. 4 we see some
examples for different values of a.

5 Increasing the number of monitored filters

As mentioned before, uncertainty in visual signal detec-
tion has already been modeled on the assumption that
more than one filter is applied. While displacing as well
as widening a filter affects sensitivity, utilizing multiple
filters is related to the decision part of the observer.
Several methods of combining the outputs of multiple
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Fig. 4. Psychometric functions resulting from increasing the filter
width of a Gabor filter. The solid curve corresponds to a = 1 and the
dashed curves to a = 5 and a = 20, respectively

independent filters have been proposed. The optimal way
would be to combine their likelihoods. However, this is
formally difficult to handle. It is easier to choose the
maximum filter output, a strategy first suggested by
Creelman (1960) and also applied by Pelli (1985). For
a 2IFC task this means that the interval is chosen which
contains the maximum value of the filter outputs. Both
methods lead to quite similar results (Nolte and Jaarsma
1966; Green and Birdsall 1978).

For the maximum strategy and a 2IFC task we have
(Hiibner 1993)

M1M
M12M

P{C} = j' f)F(u)®™ 1 du )
where M indicates the number of filters.

Equation (5) can be used to compute the effects of
increasing the number of filters. Examples for a matched
filter are depicted in Fig. 5. As one can see, increasing
M has the effect of increasing the slope of the correspond-
ing psychometric functions.

6 Discussion
It has been shown that a decrease in detection perfor-

mance caused by spatial-frequency uncertainty can be
explained by at least three different mechanisms. Not
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Fig. 5. Theoretical psychometric functions of a detector with multiple
matched filters. The digits indicate the number of filters
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only multiple-filter models may account for a loss in
efficiency. A single filter whose position varies in spatial-
frequency domain from trial to trial may also be ap-
propriate. Finally, a strategy for signal detection under
uncertainty might be to employ a filter with a relatively
broad bandwidth.

All three mechanisms predict a decrease in detection
performance. However, as has been shown here,
there are distinguishing differences between them.
While for a randomly varied filter position the
slopes of the psychometric functions decrease with
increasing uncertainty, they increase for multiple filters.
Widening a filter produces parallel psychometric func-
tions. Thus, it should be possible to distinguish experi-
mentally between the proposed sources of the observed
uncertainty effects. For instance, by collecting
psychometric functions of the primary signal in probe-
signal experiments it should be possible to find out what
mechanism produced the different results for different
proportions of the primary signal in the experiment of
Davis and Graham (1981).

As mentioned in the introduction, ideal observers
only have to cope with external noise. Thus, to compare
ideal and human observers, external noise can also be
presented to human observers as, for example, in the
experiments of Burgess and Ghandeharian (1984a, b) and
Swenson and Judy (1981). Then either it can be assumed
that the internal noise is negligible or it can be added to
the model. If internal noise N; is added simply as

E
d= |——
No + N;

it is easy to show that this also leads to parallel-shifted
psychometric functions. Therefore, mistuning is not ad-
equately modeled by adding internal noise, as done by
Swenson and Judy (1981).

The results derived in this paper rely on signal-detec-
tion theory, ideal observers, and matched filters. What
can be said about alternative models and assumptions?
A rather popular model of visual signal detection is
high-threshold theory combined with probability sum-
mation. However, not only has this model been shown to
be invalid (Nachmias 1981; Mortensen 1988), it also
predicts no uncertainty effects (Graham 1989). Therefore,
it seems to be almost unavoidable but to use signal-
detection theory (Green and Swets 1966) for modeling
uncertainty effects.

For signals more complex than simple gratings,
matched-filter theory (Hauske et al. 1976; Burgess and
Ghandeharian 1984a, b; Mortensen 1988) competes with
the assumption of multiple tuned channels (Campbell
and Robson 1968; Graham 1989). For the latter it is often
assumed that the channels correspond to oriented recep-
tive fields which can be modeled by matched filters for
Gabor signals. Therefore, as far as the detection of such
signals is concerned, the results derived here are valid for
both models.

Finally, it should be mentioned that if energy de-
tectors (Green and Swets 1966) are used, the results for
a randomly tuned single filter and for multiple filters are
similar to those derived here (Hiibner 1993). However,
the results of widening a filter differ. For the energy
detector the psychometric functions are not parallel in
this case. Rather, increasing filter width increases the
slope. This is due to the fact that for an energy detector
output variance also depends on signal energy.
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