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On Possible Models of Attention .
in Signal Detection

RoNnaty HOBNER

University of California at Berkeley

This paper is concerned with two different mechanisms of attention in auditory signal
detection. One alters the width of a Gaussian filter {or atlention band), whereas the other
changes the tuning, that is. the placement of its center. Fo formalize these mechanisms, we
first consider auditory energy-detection. To explore the effect of a randomly tuned (ilter, both
uniform and normal density distributions of its center frequency are investigated. Formulas for
predicting stgnal detection performance in 21FC experiments are derived for the different cases
resulting from these hypotheses, and examples of psychometric functions are computed. The
results reveal striking differences between the two mechanisms, Widening the auditory Alter
not only reduces sensitivity bat alse steepens the resulting psychometric functions. In contrast,
changing the filter tuning causes psychometric functions to flatten.  © 1993 Academic Press, Tnc.

INTRODUCTION

Decreasing performance in auditory signal detection situations with frequency
uncertainty led investigalors to question how subjects distribule their atteation
across the frequency range if they are uninformed about the frequency of the signal.
Several generalizations of idcal observer models, mainly thc encrgy-detection,
cmerged 1o prediet the outcome in these complex tasks (see Swets, 1984, for a
review ). ‘The models vary in the number of filters (or bands) they propose and the
way lilter outputs wre combined. Usually, such models are divided in two classes:
single-band and multiple-band models.

The consequences of both classes of models have been derived in order to
distinguish between them empirically. So far, however, cxperiments have failed to
establish which class of models is more appropriate. Accordingly, this paper is
concerned with deriving additional featurcs which can help to discriminate the two
classes of models. To attain this objective the underlying ideas are specified in
greater mathematical detail. This approach has been emphasized by Shiffrin (1988),
who pointed out that detaited mathematical models of the attention processes are
needed (o provide firm answers. To motivate the derivations we first describe the
relevant aspects of awditory signal detection and their respeetive experimental
paradigms.
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To begin, in a simple auditory signal detection experiment, a listener is typically
asked to detect a known sinusoidal signal in background noise. It turns out that
detection performance in this relatively simple situation depends mainly on the
signal-to-noise ratio. However, if the listener is also unfamiliar with the frequency
of the signal, additional detection difficulties arise even when signals are several
decibels above the simple threshold. It has been argued that listeners uncertain
about the signal frequency do not know what frequency to listen to. Typical
measures taken to eliminate this uncertainty and its associated loss of sensitivity,
involve either switching off the noise at the beginning of the experimental session,
or presenting the first few signals at a relatively high level such that they are clearly
audible to the listeners. (For an experimental investigation of the latter strategy, see
Gundy, 1961). This demonstrates that providing information about the signal
frequency is helpful in directing the listener’s attention to the respective frequency
region and improving performance.

Attention effects have also been investigated experimentally by deliberately
exposing listeners to frequency uncertainty throughout the experiment. It appears
that detection performance consistently decreases as frequency uncertainty
increases. Several models of selective attention have been proposed to account for
such decrements in performance (see Swets, 1984), As mentioned earlier, the
concept of auditory filtering is central to these models.

Filtering is associated with one of the most striking features of the human
auditory system, its frequency resolution capability. Ohm (1843) was among the
first who systematically observed this feature. Later, von Helmholtz (1863)
suggested a bank of band-pass filters as a model to account for frequency
resolution. Subsequently, Fletcher {1940} provided psychophysical data strongly
supporting auditory filters and proposed a method for their quantification. While
investigating masking effects of noise varying in bandwidth, he discovered that only
a limited band of noise around the signal frequency is effective in masking the
signal. Moreover, his data indicated that the masking band increases with signal
frequency. These results suggest that listeners listen through a band-pass filter or a
“critical band,” as Fletcher (1940} called it, centered on the signal frequency.

Since then, attempts have been made to determine the “true™ auditory filter
width. However, different methods lead to different estimates of the bandwidth.
Moreover, Green (1960), using noise as both signal and masker, concluded that the
filter width is variable. Although some estimates of critical bands may indicate their
minimum bandwidth, they seem to be adjustable beyond this minimum. Therefore,
it has been suggested that the critical bandwidth may not be fixed, but can be
adjusted “under intelligent control” {Green, 1960; Swets, Green, & Tanner, 1962).

Although the idea of a variable critical band provides a possible mechanism of
auditory attention, earlier single-band and multiple-band models of attention
assumed fixed bandwidths. The first single-band model was introduced by Tanner,
Swets, and Green (1956) (cited in Swets, 1963). They assumed that listeners employ
a single band-pass filter and are capable of controlling its location. Listeners can
voluntarily tune the filter to certain frequencies. If the filter is moved from one
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frequency location to another, it is assumed that it also sweeps through the inter-
mediate frequencies.

If the listener is uncertain about the signal frequency, he or she probably does
not tune the filter optimally. Attention is not focused at the correct location,
Consequently, the listener’s sensitivity is reduced. To test this and other predictions
an experimental situation is frequently used in which the signal may have one of
two equaliy likely frequencies in a given trial. Assume a two-interval forced-choice
(2IFC) procedure, that is, each trial consisting of two time intervals only one of
which contains the signal. The listener’s task is to indicate the interval he or she
believes to have contained the signal. Tanner er al. (1956) who conducted such an
experiment, varied the frequency separation of the two possible signals. Results
were in line with a single-band model. Detection performance decreased as a func-
tion of the frequency separation, but approached a minimum when the separation
was sufficiently large. This minimum has been interpreted as suggesting that
listeners are incapabie of sweeping the filter from one location to the other during
a brief signal interval. In this case the listeners can attend to only one frequency
during each trial. If they select this frequency randomly, the probability P,{C} of
being correct across trials is

P,{C}=0.5P {C}+0.5(0.5),

where P, {C} is the probability of being correct in a one-frequency situation.

One of the earliest multiple-band models was proposed by Green (1958} He
assumed that listeners can utilize more than one band-pass filter simultaneously.
The output of different bands is then combined via some form of linear combina-
tion. Thus, if the listener is asked to detect a signal with one of two possible
frequencies, he or she listens through two filters; as a result, the effective masking
noise is increased as compared to the fixed frequency situation. Hence, the signal-
to-noise ratio is decreased and, consequently, also detection performance.

Several experiments have been conducted testing singie-band and multiple-band
models as alternatives (e.g., Creelman, 1960; Swets, Shipley, McKey, & Green,
19359; Swets & Sewall, 1961; Veniar, 1958). Unfortunately, the data are inconclusive.
Some experiments support the single-band models, others multiple-band models,
and a few support even both. In addition, qualitative individual differences have
been reported. Some listeners behaved as though they were listening through a
single band, while others seemed to listen through multipte bands. There are other
results posing difficulties for both classes of models. For instance, Green (1961)
conducted an experiment in which the signal could have any frequency ranging
from 500 to 4000 Hz. The decrement in detection performance was far less than
predicted by either model. To explain this result, Green suggested that there is some
initial uncertainty even in detecting a single frequency. Presentation of a stimulus
with a fixed frequency does not guarantee that the listener knows the frequency
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exactly. In an experiment by Shipley (1959) the signal could have relatively high or
low levels chosen at random. The results showed that detection performance
improved after a correct response to a high-level signal in comparison with the
performance following a correct response to a low-level signal. This indicates
that a preceding high-level signal may serve as a cue, helping to define the signal
frequency.

Interestingly, frequency uncertainty introduced by using unspecified signals can
be, at least partly, compensated by presenting a cue to the listener indicating which
frequency comes next. This has been demonstrated by Swets and Sewall (1961). In
one situation they used a sinusoidal cue with the same frequency as the signal. In
another, different lights were presented as cues for certain frequencies. Although
cues failed to remove uncertainty entirely, improvement was appreciable. Further-
more, Johnson and Hafter {(1980) showed that cues can improve performance cven
when the listener has some knowledge of signal frequency.

Considering all these results, the question arises as to whether there may be addi-
tional features differentiating the two model classes not yet taken into account. It
will be shown here that there are indeed striking differences not noted so far. We
proceed by assuming that traditional single-band models are not quite realistic.
Then we suppose assuptions we deem more suitable and look at the outcomes.

If the notien of a single moving filter is adopted, it is unlikely that the filter will
be placed optimally after moving [rom one frequency location to another. It is more
reasonable to suppose that signal frequencies are generally not known exactly. As
a consequence, it is very unlikely that the center frequency of the filter will be
located precisely on the signal frequency in every trial. Admittedly, a slight
misplacement of the filter should not produce a decrement in detection if the filter
has a rectangular shape. However, il the filter has sloping skirts then there will be
attenuation close to center frequency. Even a small misalignment will cause the
signal-to-noise ratio to decrease.

The assumption of a rectangular filter may be inappropriate. Obtained data
suggest the shape of the auditory filter to be approximately Gaussian (Patterson,
1974) or exponential {(Patterson, Nimmo-Smith, Weber, & Milroy, 1982).
Accepting this result, the consequences for the behavior of the single-band model
can be derived. This is done by investigating the effect of misplacing the center
frequency of such a filter. As mentioned before, to answer this question in detail it
is necessary to quantify several underlying concepts. Thus, additional assumptions
must be imposed. First, we need to know or to assume how the listener processes
each stimulus. In what follows we assume an energy-model of auditory signal
detection (cf. Green & Swets, 1966). Additionally, two different probability
distributions of the filter’s center-frequency placement are considered: uniform and
normal. Our results are then contrasted with alternative models of attention:
varying the filter width or the number of filters. We begin by describing the energy-
model of auditory signal detection.
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ENERGY-MODEL OF AUDITORY SIGNAL DETECTION

For a 2IFC situation detection theory assumes that each of the two intervals
contains a sample of one of the two random variables U, and U,. Here, the random
variable U, corresponds to signal plus noise and the random variable U, to noise
alone. The observer chooses the interval containing the larger sample. Formally, let
P{C} denote the probability of a correct response. Then it is assumed that

P{CI=P{U> U} = Fu)fw) d, (1)
where F, (u)= [‘Lm L{y)dy is the distribution function of U/, and f,(#) is the
probability function of U,.

Obviously, to predict the behavior of an observer it is necessary to specily the
probability distributions of noise and signal plus noise. Hence, we must know how
the observer processes the signal. One assumption is that the energy content of each
sample is extracted and the two samples are compared. To do the comparison each
sample is passed through an identical filter and the energy output is noted.
This energy-model has served as a basis for most single-band and multiple-band
treatments of attention. To compute energy distributions of noise and signal plus
noise we need to specify a formal representation of the respective waveforms.

Consider a waveform x(r) which can be either band-limited noise n(#) or a signal
plus such noise s(t). Further, let the time interval on which the waveform is defined
be represented by the closed real interval [0, T']. Then, a representation of the
waveform is given by

x(t)= Z a, cosz—nkt-i—bk sinz—nkt, 0 <1< T, k integer, (2)
k=1 r T
where
T 2
ak=%.[0 x(t)cos%rktdt
and
T 2
b,;% ) x(t)sin?ﬂ'ktdt

(cf. Green & Swets, 1966). This representation is a Fourier series and provides an
approximation £(7) of the continucus waveform x(z). The lowest frequency as weil
as the frequency spacing is 1/T. For the band of noise n(r) it is assumed that the
coefficients a, and b, are independent Gaussian variables with x =0 and ¢ = N,/T,
where N, denotes the noise power in a 1-Hz band (for more details see Green &
Swets, 1966). In the present paper the noise band is assumed to cover the hearing
range. Outside this band the coefficients are zero.
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After Parseval’s theorem the power in the waveform approximation x(¢) is
1T et
—j (1) dt Z (a2 +b2).
Tl =

If the waveform x(¢) is noise aione, the energy of the approximation is a random
variable and is given by

T T
U:=j (1) di =5
0

Y (az+b})
k=1

Standardizing the constants and letting o, =a,/\/No/T, B =5b.//No/T one
obtains

2U*

§ (3)
k=1

After passing the noise through some arbitrary filter with a squared-magnitude
function |H{k/T)|* one obtains (see Patterson & Henning, 1977)

= 3 (i + B0 [HK/T) )

If a sinusoidal signal with amplitude 4 and in sine phase is added to the noise,
it is necessary that its frequency f, be an integral multiple of 1/T. Thus, let k, be
a positive integer such that f, =k, 7. The encrgy of the approximation for this case
is given by

T oo
U;"=_[ §2(t)dt=§[ Y (aj+bi)+ A%+ 2A4(ay, sin 8+ by, cos 9)].
0

k=1
Standardizing and filtering leads to

@

=Z(ﬁ+ﬁnmwnﬁ

2
+[%+2A / T/No (o, sin 8 + B, cos 9)] |H(f)% (5)

Note that the cross-product terms will have an expectation of zero over the trials.
Because the o, and f§, are independent standardized normal variables, their squares
are distributed as y°. Consequently, also (x°+ §?) is distributed as x> with two
degrees of freedom. Thus, the distribution of noise-alone (Eq. (4)) has mean

22U,
J(NO) 2 Z IH(k/T)I2
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and variance

2 oo
Var( ;;;) =4 ¥ (H(/T)"

Signal-plus-noise produces a distribution with mean

20U & T4?
g(Nf)=z > HUITI + S H )
4] k=1
and variance
2U, = 4TA2
Var(N ) 4 Y |H(kTH + iH(fo)I“
¢ k=1

Fortunately, when the number of components entering into the sums (4) and (5)
is not too small, we can assume that the distributions are approximately normal
{Lindeberg’s theorem, Feller, 1966). This makes the calculation of the proportion
of correct responses in a 2IFC task quite easy. Because it is assumed that observers
select the interval containing the larger energy sample, they respond correctly if and
only if the larger sample is drawn from the signal-plus-noise distribution. However,
the probability that U/,> U, is the same as the probability that I/ — U, >0,
Because the difference of normal variables is also normally distributed, the
percentage correct is given by

P{C}=d(z)= e 7 dx, (6)

1 z
LI,
where

_ 8(2U,[N,)— &(2U,/Ny)
 /Var(2U JNo) + Var(2U,/No)’
. (TA?/N) |H(fo)I?

VX [HK/T)* + (ATAYN) | Hfo)*

Using the fact that the energy E, of a sinusoidal signal is TA*/2 one obtains from
Eq. (8):

(7)

(8)

_ (E./No) [H(f)? |
V2EE THE DI+ RE/No) [HUoI

For reasons that will become ciear later we convert Eq. (9)to a functlon of the filter
gain at the signal frequency y= H(f,):

(E,/No) |y|? |
V232 1HUK T + QE,/No) |yl

(9}

z2(y)= (10)
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Let us consider the special case of a rectangular filter of width W and centered
at the signal frequency, that is,

L, for fo—-WR2sf<fi+ W2,
0, elsewhere.

H(f)= {

Since H{f,)=1, Eq. {9) simplifies to

z= (E,/No) (11)
J2WT+2E,/N,

Note that the encrgy of the signal as well as the spectral density of the noise are
determined by the experimenter. The variables set by the auditory system are the
auditory filter width and shape and the auditory integration time T.

It should be noted that there is at least one alternative method for deriving the
energy distributions. This approach has been articulated by McGill (1967a, 1967b).
He started with known energy distributions of narrow-band noise and signal plus
noise. Then he constructed wide-band noise by adding up a specific number
of narrow-band noise sources spaced orthogonally in frequency, producing the
respective energy distributions.

ErrECT OF RANDOM FILTER POSITION

In this section we consider the effects of introducing additional assumptions to
single-band models. More precisely, we investigate what happens when the filter is
positioned randomly around the signal frequency rather than exactly on it. As
mentioned in the Introduction, it is uniikely that filter placement is exact if one
assumes a moving filter.

Throughout the following derivations, we assume that filter position varies
randomly from trial to trial, but remains fixed within a trial. Therefore, the position
of the center frequency of the fiiter can be represented by a random variable X. To
calculate the effect of a randomly positioned filter the distribution of positions must
be specified. Here, it is assume that X has either a uniform or a normal distribution
and that their respective means are identical to the signal frequency.

Random filter position implies that filter gain at the signal frequency is also a
random variable, labeled here Y. Consequently, effective signal amplitude and
energy become random variables as well, The effective signal amplitude depends on
the gain of the filter at the signal frequency which is a function of filter shape.

Because this paper deals exclusively with symmetric filter shapes and symmetric
density functions it is convenient to define a standardized frequency x by

e |f;0fo|',
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where f; denotes the signal frequency and f denotes the unstandardized frequency
in Hz. Standardization shifts the origin to the signal frequency and maps the whole
frequency range into positive reals. Accordingly, the standardized filter width will
be denoted by W .

A great deal of effort has been directed at measuring auditory filter shape (for a
review see Patterson & Moore, 1986). A class of filter shapes that seems reasonable
has been suggested recently by Patterson er al. (1982). It involves a slightly
modified exponential shape called rounded-exponentiaf (roex). The simplest filter
form of this class is a one-parameter roex,

Hi{x)=(1+bx)e™,

where b is a parameter determining the filter width. In this paper, however, an
equivalent Gaussian filter is adopted for mathemetical convenience:

Hi{x)=e *F.

Its equivalent rectangular bandwidth in standardized frequency is \/E Figure 1
illustrates the filter shapes of a roex and a Gaussian filter each with an equivalent
rectangular bandwidth of 0.4. As can be seen, the filter shapes are quite similar. At
least, they are sufficiently close for our purposes. In fact, a Gaussian filter of this
type was originally proposed by Patterson (1974).

The gain of the Gaussian filter is continuous. Consequently, the corresponding .

1.0 T T T T
y
\
0.8F _ . -
\ —Ganssian
A
06F -
A
H(z) v
\
0.4 roex— " ]
0.2+ N =
N\
> e
] iy i
0‘%.0 0.2 0.4 0.6 0.8 1.0
x

Fic. 1. Filter shapes of a Gaussian and a roex [ilter with identical equivalent rectangular
bandwidths.
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random variable Y is also continuous. The proportion of correct responses in a
2IFC task is given by

B
P{C}=[" " P{CIY=y}e(y)a. (12)

QOur task is to derive the probability density function g(y) based on the
distribution of the center frequency of the filter, In the next subsection a uniform
distribution is considered, and in the subsequent subsection a normal distribution.

Unr1rorRM PosiTION DISTRIBUTION

In this subsection it is assumed that the position of the filter center frequency is
uniformly distributed in the standardized intervai (0, m). That is, the corresponding
random variable X has the density function:

1
-, if O<x<m,
fxy=<m
0, elsewhere.
To derive the density distribution of the random variable ¥ note that the filter
is a strictly decreasing function of X. The function H maps the interval (0, m) onto

the interval (H(m), 1). Therefore, the density of ¥ is given by (cf, for example,
Hogg & Craig, 1970)

dH ™! .
SIH(p)] ’_dy—(y) , if Hm)<y<l,

0, elsewhere,

g(y)=

where H~' denotes the inverse function of H and |x| is the absolute value of x.
The inverse function of the Gaussian filter is

H Yy)=/v[—Iny], O<y<l.
Consequently, the density function of Y is

v
g(y)—zmym, Hm)<y<l.

Substituting this expression in Eq. (12) and applying Eq. (10) finally gives

P{C} =jl PLz(y)] —~f"—dy. (13)
Him) 2m

y/ —Iny
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F16. 2. Psychometric functions of an energy detector with a uniformly varying Gaussian filter. The
curve labeled “fix” corresponds to a non-varyving filter. The remaining curves correspond to variation
ranges of m=0.f, and m=0.2.

This formula leads to the psychometric functions depicted in Fig. 2, corre-
sponding to variation ranges m of 0.1 and 0.2. Throughout this paper a time
constant of 77=0.2 is used. The function labeled “fix” corresponds to a fixed fiiter
and serves for comparison. Performance of a randomly moving filter can never be
superior to the performance of a fixed filter centered on the signal frequency. As can
be seen, random placement of the Gaussian filter decreases slope.

NORMAL POSITION DISTRIBUTION

Although one can think of situations in which a uniform distribution may be
appropriate, a normal position distribution is usually more suitable. One might
suspect that cueing leads to normally distributed filter placements. Normality
implies that center frequency can be moved to any location in the normalized
interval (0, 0}, The important paramecter is the variance of the position
distribution.

If the center frequency of the filter is normally distributed, the function H maps
the interval {0, o0) onto the interval (0, 1). Since only positive reals are considered,
the density distribution of X is

2

f(x)=\/ﬁa

— 2 2
g ~¥H2 0<x< oo,
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The reasoning applied in the previous section can now be used to derive the
density function of Y. We have

2
euln _v,:'2(r’ <y 1,
¥

fLH” (y)]=\/§;6

which leads to the density function of Y,

ﬂ 2
In v/2
ev ¥i2o ,

= O<y<l.
8(7) vo./—2nlny
Finally, one obtains
1 \/; ,
P{C}=| @[z —_— et gy, {14)
(€)= oLl —ee

Examples of psychometric functions reflecting these assumptions are shown in
Fig. 3. The function corresponding to the fixed filter is identical to that in Fig, 2.
Functions corresponding to standard deviations of 0.05 and 0.1 display the
behavior already encountered in the case of a uniform distribution: slope decreases
as variance increases.

P{C}

O'EIO 0 10 20

10log( E/Ng)

FiG. 3. Psychometric functions of an energy detector with a normally varying Gaussian filter. The
curve labeled “fix” corresponds to a non-varying [ilter. The remaining curves correspond to standard
deviations of the position distribution of 0.05, wnd 9.1.
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THE EFFECT OF INCREASING THE WIDTH OR NUMBER OF FILTERS

Arguments thus far have been concerned with various assumptions related to the
single-band model and with the consequences if mistuning occurs with a single
moving filter. This section is concerned with alternative modeis. As mentioned in
the Introduction, broadening a single filter or utilizing multiple filters can be used
equivalentily to predict decreases in performance under uncertainty.

The first question investigated in this section is how the performance of an energy
detector is affected by increasing its filter width. Suppose 2W7T > 10, so that the
percentage correct in a 2IFC experiment can be approximated via formula (6). For
convenience, only rectangular filters are considered in this section. No fundamental
differences are obtained with a Gaussian filter. Varying the width W of the
rectangular filter produces different psychometric functions as illustrated in Fig. 4.
The functions depicted correspond to filter widths of 20, 50, and 600 Hz. As one
would expect, widening of the filter shifts the psychometric function to the right;
that is, the detector loses sensitivity. This is similar to the effect of mistuning
a single filter. The interesting difference, however, is that the slope of the
psychometric function increases with filter bandwidth. This result is contrary to the
decreasing slopes obtained by mistuning a single filter.

It is worth pointing out that the same result is obtained with the alternative noise
and signal-plus-noise distributions preferred by McGill (see Green & McGill, 1970).

Next, the effect of utilizing more than one filter is investigated. Multiple-band
models argue that the auditory system uses more than one filter in complex signal

1.0
0.9
0.8

P{C}

0.7

0.6

OEIO 0 10 20

10 log( £/No)

F1G. 4. Psychometric functions of an energy detector with a non-varying rectangular filter. The
curves correspond to filter widths of 20, 50, and 600 Hz.
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detection situations. Some multiple-band models were inspired by Green’s (1958)
statistical summation model. The latter was originally worked out to predict
detection of multi-component signals. It was applied subsequently to detection
under conditions of uncertainty (see Creelman, 1960). Consider, for example, a
two-filter model with two random variables X(f,) and X(/,), each describing the
output of a single filter. Green (1958) suggested that the two outputs should
combined linearly:

U=aU(f,}+bULS;).

Since in signal detection under uncertainty there is usually no reason to weight the
filters differently, it is reasonable to set a=5=1. But then it is easy to show that
for a 2IFC procedure and an energy detector, the percentage of correct responses
is normaly distributed with

o (EJN)
J2ZMWT +2E, /N,

where M reflects the number of filters. This result demonstrates that in the case
considered here, doubling the width of a filter is mathematically equivalent to
utilizing two independent and non-overlapping filters of equal width. Results
obtained by widening a filter also apply interchangeably to this kind of multiple-
filter model.

Another variant of the multiple-band model was suggested by Creelman (1960).
In his two-filter model he assumed that maximum output of the filters determine
the response. If Creelman’s formula is generalized to more than two filters and
adapted to a 2IFC method we find

M1 N M
2M—-1 2M—1

P{C}= |” 1E o ax

Increasing the number M of filters again has the effect of increasing the slope
of the psychometric functions. These results show that there are consistent
fundamental differences between the two classes of models.

DISCUSSION

Increasing fiiter bandwidth and changing filter-position at random have quite
different effects on detectability. Although both processes result in loss of sensitivity,
the slopes of the respective psychometric functions behave differently. Widening a
filter steepens the slope, whereas randomly positioning the filter causes the slope to
decrease. It should be possible to test these diverging predictions empiricaly.

One interesting application could be Green's (1961) suggestion that even with a
single frequency there is frequency uncertainty. If this is indeed true then it is an
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empirical question whether such uncertainty can be accounted for by widening the
auditory filter or by mistuning a filter with fixed bandwidth.

The results obained here also bear on the question of how cues work. Do they
tmprove the filter tuning or do they cause the filter to narrow? By collecting
psychometric functions while varying the effectiveness of the cues it should be
possible to answer this question.
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