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If the spatial-frequency of sinusoidal signals in a contrast-detection experiment varies randomly
from trial to trial, then performance is decreased compared with that in a situation where it
remains constant. This spatial-frequency uncertainty effect can more or less be compensated by
presenting informative cues shortly before each trial. Single-band, as well as multiple-band models,
have been proposed to explain the uncertainty and cuing effects. While the latter assume that under
uncertainty multiple channels are monitored simultaneously, the former propose that in each trial a
single, but sometimes inappropriate, channel is selected for monitoring. Until now it is open which
of these models is valid. Therefore, psychometric functions were collected under different
conditions of spatial-frequency uncertainty. It appears that the size of the uncertainty effect varies
with spatial-frequency. This result can be explained by a multiple-band model, as computational
analysis reveals. Copyright © 1996 Elsevier Science Ltd.
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INTRODUCTION

The spatial-frequency selectivity of the human visual
system has led to the conception that it operates as a local
spatial-frequency analyzer, i.e. that each retinal location
is processed simultaneously by multiple channels, each
tuned to a specific range of spatial-frequencies and
orientations [cf DeValois & DeValois (1988); Graham
(1989)]. Different methods, such as subthreshold sum-
mation [e.g. Graham et al. (1978); Watson (1982)],
contrast masking [e.g. Legge & Foley (1980); Wilson et
al. (1983)], and adaptation [e.g. Blakemore & Campbell
(1969); DeValois (1977)] have been applied to investi-
gate bandwidth, sensitivity, and other properties of the
presumed individual channels.

Usually, the task in such experiments is to detect
certain signals, and the extent to which the observers’
performance depends on such factors as the signals’
contrast or the properties of other simultaneously
presented stimulus components is then examined. An
observed performance modulation is thought to reflect
corresponding properties of the channels in the visual
system.
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However, detection performance is not only affected
by stimulus parameters or the state of the early sensory
system. Also, the state of higher, cognitive levels, such as
the observers’ knowledge about the signals they have to
respond to, modulates signal-detection behavior. This can
easily be demonstrated by introducing uncertainty, i.e. by
presenting signals with attributes varying randomly
across trials. In these cases detection performance or
speed of response are usually reduced compared with
situations where the attributes are fixed.

Such uncertainty effects have been found for various
attributes such as phase [e.g. Burgess & Ghandeharian
(1984a)], direction of movement [e.g. Ball & Sekuler
(1981)}, location [e.g. Burgess & Ghandeharian (1984b);
Davis et al. (1983); Posner et al. (1980); Swensson &
Judy (1981)], and spatial-frequency [e.g. Davis et al.
(1983); Hiibner (1996); Kramer ez al. (1985)].

For interpreting the uncertainty effects, two functional
stages of processing have been distinguished: a coding
stage and a decision stage [cf Shaw (1984); Sperling &
Dosher (1986)]. In the coding stage the stimulus is
transformed into an internal representation, while in the
decision stage this representation is used for determining
the response. An important question is: “Are decision
processes or also coding processes affected by uncer-
tainty?”.

To be more specific, assume that in a signal-detection
experiment with a 2AFC (two-alternative forced-choice)
procedure the value of a certain signal parameter is

3429



3430

chosen randomly for each trial from M possible values.
Assume further that for each of the M values there exists a
corresponding sensory channel which encodes and
transmits the information and whose output represents
either the signal plus noise or noise alone. Then, in the
signal-plus-noise interval one channel transmits the
signal-plus-noise while the remaining channels transmit
only noise. In the noise interval, on the other hand, all
channels transmit noise alone. For deciding in which
interval the signal was present, the output of at least one
of the channels for each interval must be processed and
the results compared in a certain way. In respect to such a
situation, one can ask [e.g. Davis et al. (1983)] whether
the uncertainty merely affects the processing of the
channels’ output (decision stage), or also the character-
istics of the individual channels (coding stage).

For investigating this and related questions it can be
very useful to consider ideal-observer models [cf Swets
(1984)], i.e. quantitative models which represent the
optimal behavior for the situation under consideration.
By contrasting ideal and human performance, and by
rendering the ideal model’s behavior suboptimal, one
might gain insight into the human visual system.

There are two main classes of formal models which
have been employed for explaining uncertainty effects:
single-band and multiple-band models [¢f Graham
(1989); Hiibner (1993a,b); Pelli (1985)]. The single-band
models assume that only the output of one channel can be
monitored at a time. Since under uncertainty the
observers do not know in advance which channel
transmits the signal, they are monitoring a noise-alone
channel in some trials, which leads to a decrease in
overall performance.

The multiple-band models, on the other hand, assume
that the output of several channels can be processed
simultaneously. In this case a rule for transforming the
multiple outputs into a single decision variable must be
adopted. For instance, a possible strategy is to choose that
interval in which the maximum output occurred (Creel-
man, 1960). Another procedure would be to combine the
outputs for each interval linearly and to choose the
interval with the largest value [see Green & Swets (1966)
for more details].

The multiple-band models with a maximum-output
rule predict a decrease in performance under uncertainty,
because the “false-alarm” rate, i.e. the probability that a
channel in the noise interval produces the maximum
output, increases with the number of monitored channels
[cf Swets (1984)]. If the linear-combination rule is
applied, then performance also decreases, but this time
because the amount of effective noise is increased.

Notice that these models assume uncertainty to
produce a performance reduction solely by influencing
the decision processes, i.e. without the sensitivity of the
individual channels being affected. That this assumption
holds for the detection of luminance increments under
location uncertainty has been suggested by Shaw (1984).
A similar hypothesis has also been proposed for the
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effects of spatial-frequency uncertainty (Davis et al.,
1983).

If it were also necessary to model a reduction of
channel sensitivity, then this could be accomplished, for
instance, by increasing the bandwidth of the individual
channels, for which a further decrease in performance
would be predicted (Hiibner, 1993a,b).

Important with respect to uncertainty are also cues,
which, when presented shortly before each trial, can more
or less compensate for the uncertainty effect. Here, a
similar question arises: given uncertainty, do cues reduce
the uncertainty effect by also improving sensitivity of the
individual channels or by only affecting the decision
process?

Cuing has mainly been investigated in the domain of
spatial uncertainty [for an overview see Kinchla (1992)].
In respect to the detection of luminance increments it has
been proposed that cues improve performance by only
affecting the decision process (Miiller & Findlay, 1987).
However, there are other results showing that cues can
also improve sensitivity (Bashinski & Bacharach, 1980;
Downing, 1988; Hawkins ef al., 1990; Miiller &
Humphreys, 1991).

If one considers the effects of cues, then it is important
to distinguish different cue types. Mainly, symbolic and
sensory cues have been distinguished. While symbolic
cues provide only indirect information about the signal,
sensory cues specify the signal by providing its attributes
directly [cf Johnston & Dark (1986)]. Assume that we
want to cue the spatial-frequency of a sinusoidal grating
of a fixed spatial extension. Then we can employ a
symbolic cue by presenting, for instance, a digit which
indicates the number of cycles of the subsequent target
grating. On the other hand, a sensory cue could be a
grating of the same spatial-frequency as the target.

Usually, sensory cues are more efficient for reducing
uncertainty effects than symbolic cues (Hiibner, 1996;
Jonides, 1981; Miiller & Humphreys, 1991). A possible
hypothesis for explaining the efficiency differences is
that symbolic cues affect merely the decision process,
whereas sensory cues also affect encoding by preactivat-
ing or priming the sensory channels [c¢f Miiller &
Humphreys (1991)]. In a recent paper Hiibner (1996)
compared the efficiency of several cue types for reducing
spatial-frequency uncertainty. There turned out to be no
clear-cut dividing line between the efficiency of symbolic
and sensory cues. Thus, there seems to be a continuum of
cuing efficiency.

Single- or multiple-band models can be used to explain
both the cuing effects and the differences between
different cue types. For the single-band models one
could assume that cues help the observers to choose a
more or less appropriate channel to monitor. While this
mechanism merely affects the decision process, one
could additionally propose that certain cues also reduce
the bandwidth of this channel. On the other hand, for
multiple-band models one could assume that the number
of monitored channels decreases with increasing cue
efficiency.



EFFECTS OF SPATIAL-FREQUENCY UNCERTAINTY

The aim of the present paper is to investigate the
mechanisms responsible for spatial-frequency uncer-
tainty and cuing effects by means of ideal-observer
analysis. As has been mentioned, several mechanisms are
potential candidates for explaining uncertainty and cuing
effects. Thus, the objective was to determine which one is
valid. Fortunately, it has been shown that psychometric
functions, collected under different uncertainty condi-
tions, can be useful for distinguishing betweem the
mechanisms. Their slope and threshold parameters vary
characteristically with uncertainty [cf Hiibner (1993a,b)]
for the different mechanisms. While the single-band
models predict that the thresholds increase but the slopes
decrease with increasing uncertainty, the multiple-band
models predict increasing thresholds as well as increasing
slopes.

The effect of bandwidth modulation on the slope of the
psychometric functions depends on the specific filter
model assumed for the individual channels. While for the
so-called energy-detector model the psychometric func-
tions steepen slightly with increasing bandwidth, they
remain parallel for a matched-filter model [for details see
Hiibner (1993a,b)].

The approach of considering psychometric functions
has already been successfully applied to modeling the
mechanisms that produce frequency uncertainty in
auditory perception (Hiibner & Hafter, 1995). Thus, a
similar method is applied here to visual signal-detection.
Psychometric functions were collected under conditions
with and without spatial-frequency uncertainty, as well as
under several cuing conditions. The results obtained are
analyzed by means of ideal-observer models.

METHODS

Apparatus

The stimuli were presented on a 19"-color-monitor
(MIRO, Type GDM-1965). The monitor had a resolution
of 1280 x 1024 pixels and was connected to a MIRO-
TIGER graphics-board with a refresh rate of 75 Hz (non-
interlaced), resident in an IBM-compatible personal
computer (PC). The PC also served for controlling
stimuli presentation and response registration.

The space-average luminance for each gray level was
measured (with an L 1000 photometer from LMT
LICHTMESSTECHNIK, Berlin) and the data were used
to create a gamma look-up table to relate the required
luminances to the corresponding 256 gray levels.

Stimuli

Signals were vertical sinusoidal gratings. The stimuli
subtended ca 2.66 deg horizontally and vertically (256 x
256 pixels) and were viewed binocularly from a distance
of 144 cm with a chin rest and natural pupils. Five
different spatial-frequencies were employed: 0.75, 1.88,
4.14, 9.02, and 18.8c/deg. To obtain psychometric
functions, five signal levels were used which ranged
from 1dB below threshold, i.e. from —1dB (SL)
(sensation level), to 3 dB above threshold, i.e. to 3 dB
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(SL), in 1-dB steps. The space average luminance of the
signals was 41 cd/m* which was identical to that of the
homogeneous background.

Since we are interested in processes which are located
at higher stages of the visual pathway, one-dimensional
(vertical) static white noise was added to the signals to
overwhelm the effects of photon noise and of peripheral
internal noise sources [cf Geisler (1989)].

The noise was produced and its spectral density
calculated analogously to the method employed by
Burgess and Ghandeharian (1984a): pseudo-random
numbers (Box—Miiller method) were used to construct
white noise in a band of 0—48 c/deg. Since the number of
gray levels was limited, the values were truncated at
+3.2 SDs. The 256 gray levels were distributed over a
luminance range of 0.314-82 cd/m? which corresponds
to a luminance-modulation range in Michelson-contrast
((Lmax — Lmin)/Lmax +Lmin)) of 0.99. The standard
deviation of the noise was 0.099 modulation units or
8.16 cd/m?. Since the noise power was flat from 0 to 48
c¢/deg, the resulting (one-sided) noise spectral density N,
was 2.04 x 107" (0.099%/48). In each trial, individual
noise samples were drawn for each of the intervals.

Cues

Four different cue types were employed: iconic;
rotated; phase; and symbolic. The iconic cues were
identical to the signals but presented without noise and
with a contrast of 0.6. Rotated cues were 90 deg rotated
iconic cues, and phase cues were similar to the iconic
cues but had counter phase. The symbolic cues were
digits corresponding to the number of cycles of the
signal. The individual characters of the digits subtended
ca 0.6 deg x 0.4 deg.

Procedure

A spatial 2AFC-method was employed, i.e. signal plus
noise and noise stimuli were presented simultaneously on
the screen. Either the signal plus noise occurred at the left
and the noise at the right of the fixation point (i.e. center
of the screen), or vice versa. There was no spatial
separation between the two stimulus fields.

The task of the subjects was to indicate, by pressing
one of two buttons, which stimulus field contained the
signal. There was no time limit for response. A trial
started with a fixation mark which consisted of two short
horizontally centered vertical lines (with a length of
about 1 deg), one presented above and the other below
the stimulus fields. The subjects were instructed to fixate
the midpoint between the two lines. A tone started
simultaneously with the fixation mark and was presented
for 200 msec to mark the beginning of the trial.

After a random time interval with a uniformly
distributed duration between 400 and 800 msec, a cue
was presented for 106 msec (under conditions with cues).
To avoid any negative interaction between cues and
signals [see Hiibner (1996)], the iconic, rotated, and
phase cues were centered horizontally on the display and
presented above (adjacent) the stimulus field. Only the
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symbolic cues were also vertically centered. A 400 msec
time interval separated the cues and the stimuli which
were presented for 106 msec. The fixation lines remained
up to the end of stimulus presentation. If the response had
not been correct, an acoustic feedback was given. Two
thousand milliseconds after the subject’s response the
next trial started.

A transformed 1-up-2-down 2AFC-procedure (Levitt,
1970) was used to measure in a preliminary test the
thresholds of the individual spatial-frequencies. By
averaging the last six out of ten reversal points, estimates,
corresponding to 70.7% correct responses, were obtained.
Three such adaptive tracks were randomly interleaved for
each spatial-frequency and the median of the estimates
was taken as threshold. For one subject the threshold for
the highest spatial-frequency was above the level
producable with our equipment. Therefore, a spatial-
frequency of 14.29 c/deg was used instead of 18.8 c/deg
for that subject. In what follows, this lower spatial-
frequency will be treated in the same way as the higher
one for the other subjects without being further
mentioned.

The thresholds obtained with this staircase procedure
were used to determine the contrast corresponding to the
SL for each stimulus for each subject. The method of
constant stimuli was then employed with these levels to
collect the data for the psychometric functions for the
different conditions.

In addition to the conditions corresponding to the
different cue types, in which the spatial-frequencies were
always randomized, there was also a condition with
blocked spatial-frequencies and no cues, and a rando-
mized no-cue condition, i.e. a condition with randomized
spatial-frequencies and no cues. All conditions consisted
of 10 blocks each comprising 100 trials. In each block
there were four trials for each combination of level and
spatial-frequency, except for the blocked condition.
Altogether, each subject produced 40 responses per level
and spatial-frequency in each condition.

The blocked condition was run first to enable the
subjects to become familiar with the different spatial-
frequencies. If learning effects for a certain spatial-
frequency were observed, then the blocks were repeated
until a steady level of performance was reached. In the
next step the 10 blocks with randomized spatial-
frequencies and without cues were run. Finally, the
blocks for the different cue types were randomly
intermixed in each session, which consisted of four to
five blocks.

Subjects

The author and three paid persons served as subjects
(aged 21-38 yr; three male, one female). All subjects had
normal or corrected-to-normal acuity.

RESULTS

The psychometric functions, averaged across subjects
and spatial-frequencies, for the different conditions are
depicted in Fig. 1. For comparison, each function for the
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FIGURE 1. Psychometric functions for the different conditions.

Percentage of correct responses P(C) as a function of the contrast in

sensation level (SL) units. The data were accumulated across subjects

and spatial-frequencies. For comparison, each panel contains the

functions for the condition with blocked spatial-frequencies and for the

condition with randomized spatial-frequencies and no cues. For further
details concerning the different conditions see the text.

cue conditions is presented together with that for the
blocked and the randomized no-cue condition, respec-
tively.

As can be seen, the iconic, phase, and rotated cues
counterbalance the spatial-frequency uncertainty com-
pletely. The symbolic cues, on the other hand, could not
reduce uncertainty entirely. A Wilcoxon test (matched-
pair signed-ranks) with the 20 data pairs of the subject’s
psychometric functions (five levels times four subjects)
reveals that the performance in the blocked condition is
significantly higher than that in the symbolic cue
condition (7=16.5, N=18, P <0.01). Nevertheless,
the symbolic cues still improved detection performance
significantly, compared with the randomized no-cue
condition (T =13, N =19, P < 0.01).

For the purpose of examining the psychometric
functions of the individual spatial-frequencies they were
plotted separately. Since the logarithm of the signal-to-
noise ratio should be used as unit on the abscissa, the SLs
had to be transformed to signal energy. This transforma-
tion was obtained by applying equations (3) and (4) (see
the next section). In order to average the psychometric
functions across subjects, the mean contrast thresholds
for each spatial-frequency (0.0395, 0.0545, 0.0669,
0.0834, 0.1738) were used to calculate the respective
signal energies.

The psychometric functions for the blocked (single-
frequency) condition averaged across subjects are shown
in the top panel of Fig. 2. As in Hiibner (1996), the
thresholds increase monotonically with spatial-fre-
quency. This result differs from that usually obtained
with gratings of a fixed spatial extent, where the
thresholds are nonmonotonic [c¢f DeValois & DeValois
(1988)]. This difference is probably due to the external
noise. The more sensitive the visual system is to a certain
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FIGURE 2. Psychometric functions, averaged across subjects, for the

different spatial-frequencies. The upper panel shows the functions for

the condition with blocked spatial-frequencies and the lower those for

the condition with the randomized spatial-frequencies and no cues. The

left-most function in the upper panel represents the behavior of a
matched filter.

spatial-frequency, the larger is the corresponding mask-
ing effect of the noise. Thus, external white noise has a
counterbalancing effect and eliminates nonmonotonici-
ties in spectral sensitivity [¢f Green et al. (1959)].
Interestingly, increasing thresholds were also found with
gratings of a fixed number of cycles [e.g. Banks et al.
(1987)].
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Apparently, also the slopes of the psychometric
functions vary with spatial-frequency. For quantifying
the variation, i.e. to obtain estimates of the slopes and
thresholds, logistic functions were fitted to the individual
data by minimizing y* with a search algorithm [PRAXIS,;
Gegenfurtner (1992)]. The estimated slopes and thresh-
olds averaged across subjects are given in Tables 1 and 2,
respectively. It appeared that the individual slopes
increase linearly with the logarithm of spatial-frequency
(r=0.52, P <0.05).

An interesting question is whether the effect of the
spatial-frequency uncertainty was homogeneous across
spatial-frequency. For comparison, the psychometric
functions for the randomized no-cue condition are given
in the lower panel of Fig. 2. As can be seen, the
uncertainty effect differs considerably across the spatial-
frequency range. While the detection performance for the
lowest spatial-frequency is dramatically reduced such
that the corresponding psychometric function is even
shifted to the right of that for the next higher spatial-
frequency, the functions for the highest spatial-frequen-
cies are hardly affected by uncertainty. The mean
thresholds obtained by fitting logistic functions to the
individual data can also be seen in Table 2. The mean
differences between the thresholds for the blocked and
randomized no-cue condition are: 2.58; 1.05; 0.822;
—0.016; 0.821. Thus, the largest effects occurred for the
lowest spatial-frequency and the smallest for that of
9.02 c/deg. If we subject the individual threshold values
of the blocked and randomized no-cue condition to a
repeated-measure analysis of variance (ANOVA) with
condition and spatial-frequency as factors, then the
factors condition [F(1,3) = 85.0, P <0.01], and spatial-

TABLE 1. Means of the estimated slopes [in P(C)/SL units] for the different conditions and spatial-frequencies

c/deg

0.75

1.88

4.14

9.02

18/14

x

Blocked

No cues
Iconic cues
Rotated cues
Phase cues
Symbolic cues

0.0695 (0.0101)
0.1575 (0.0358)
0.0809 (0.0122)
0.1080 (0.0232)
0.0816 (0.0191)
0.0701 (0.0206)

0.0881 (0.0107)
0.1088 (0.0110)
0.1449 (0.0263)
0.1563 (0.0426)
0.1226 (0.0047)
0.0856 (0.0089)

0.1054 (0.0197)
0.1148 (0.0125)
0.1208 (0.0251)
0.1297 (0.0160)
0.1007 (0.0124)
0.1348 (0.0249)

0.1108 (0.0157)
0.1437 (0.0351)
0.0857 (0.0053)
0.1833 (0.0728)
0.1017 (0.0292)
0.1087 (0.0272)

0.1167 (0.0188)
0.1415 (0.0213)
0.0993 (0.0094)
0.1210 (0.0131)
0.0962 (0.0279)
0.1509 (0.0503)

0.0981 (0.0073)
0.1333 (0.0110)
0.1063 (0.0089)
0.1397 (0.0171)
0.1005 (0.0088)
0.1100 (0.0136)

The corresponding standard errors are given in parentheses. The last column shows the estimated thresholds averaged across subjects and spatial-

frequencies.

TABLE 2. Means of the estimated thresholds (in SL) for the different conditions and spatial-frequencies

c/deg

0.75

1.88

4.14

9.02

18/14

x

Blocked

No cues
Iconic cues
Rotated cues
Phase cues
Symbolic cues

0.3621 (0.3084)
2.9423 (0.2370)
0.0799 (0.2440)
0.6433 (0.3727)
0.3960 (0.2819)
1.1563 (0.5171)

0.0112 (0.1723)
1.0593 (0.2839)
—0.0876 (0.1915)
0.0146 (0.5538)
0.2517 (0.2211)
0.2491 (0.4598)

-0.0058 (0.3826)
0.8159 (0.1207)
-0.2462 (0.3779)
-0.0015 (0.1428)
-0.1331 (0.2413)
0.6041 (0.2269)

0.2659 (0.2102)
0.2498 (0.1582)
—0.2114 (0.1734)
-0.2713 (0.0610)
-0.6190 (0.3841)
0.2010 (0.5046)

—0.0446 (0.4618)
0.7762 (0.3601)
—0.0173 (0.1435)
0.4261 (0.3371)
0.0902 (0.1705)
0.4457 (0.3787)

0.1177 (0.1070)
1.1687 (0.2339)
~0.0965 (0.0996)
0.1622 (0.1552)
~0.0028 (0.1345)
0.5312 (0.1886)

The respective standard errors are given in parentheses. The estimated thresholds averaged across subjects and spatial-frequencies are shown in

the last column.
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frequency [F(4,12) =10.4, P <0.001] are significant.
Moreover, there is a significant interaction
[F(4,12) =6.96, P<0.01]. An explanation for the
spatial-frequency specific uncertainty effects will be
given later.

The slopes for the randomized no-cue condition do not
increase systematically with spatial-frequency (see the
means in Table 1). To investigate whether there are slope
differences between the conditions, the individual slopes
were subjected to an ANOVA with condition and spatial-
frequency as factors. Neither the factors nor the
interaction turned out to be significant. However, the
condition factor failed only shortly [F(5,15)=2.78,
P < 0.057]. Since there were large differences between
the standard errors of the means, the assumptions of the
ANOVA might not be met. Therefore, the most
interesting comparison, that between the blocked and
the randomized no-cue condition, was repeated with a ¢-
test for paired comparisons, and revealed that the slopes
in the latter condition are significantly larger [#(19) =
2.31, P <0.05].

DISCUSSION AND MODELS

The results reveal that detection performance is
decreased under spatial-frequency uncertainty, which
agrees with other studies [e.g. Davis er al. (1983)].
However, the finding that the uncertainty effect varies to
such an extent across spatial-frequencies is surprising and
has not, to the knowledge of the author, been observed
before. This differential effect may be due to the
presentation of external noise, since this is the main
difference from most of the earlier studies.

The results further demonstrate that the application of
sensory cues can entirely compensate for the effects
produced by spatial-frequency uncertainty, while pre-
sentation of the symbolic cues was less helpful in
improving detection performance. This replicates the
results of Hiibner (1996), where similar differences
between the cue types were observed.

How can the observed differential uncertainty and cue
effects be explained? An attempt at answering this
question is made in the following discussion by applying
ideal-observer models. In this respect the collected
psychometric functions are quite helpful, since their
pattern of slopes and thresholds limits the number of
appropriate models (Hiibner, 1993a,b).

Generally, it is assumed that an ideal observer monitors
in each interval of a 2AFC-task the output of spatial-
frequency channels whose number depends on the
specific experimental conditions. The output of each
channel is considered as a random variable representing
either signal plus noise or noise alone. As already
mentioned in the Introduction, if there is more than one
relevant channel, then the different outputs are combined
in a certain way to form a single decision variable for
each interval. To decide in which interval the signal had
occurred, the ideal observer chooses that interval in
which the decision variable had its largest value [for
details see Green & Swets (1966); Hiibner (1993a,b)].
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In order to construct a computational model to explain
the experimental results, one has to specify in detail how
the stimuli are transformed into the channel output, how
many channels are monitored under each condition, and
finally, if there are several relevant channels, how their
outputs are combined to obtain a decision variable.

For convenience, the models will be fitted to the
averaged (across subjects) data, since the slope and
threshold relations within and between the different
conditions are rather similar across subjects. Also, if we
fit logistic functions to the averaged psychometric
functions, then we get, for instance, as slopes for the
blocked condition (with increasing spatial-frequency):
0.0622; 0.0897; 0.1089; 0.1101; 0.1112, and for the
randomized no-cue condition: 0.1575; 0.1088; 0.1148;
0.1437; 0.1415; 0.1333. These estimates are rather
similar to the mean values given in Table 1.

First, a model explaining the data for the blocked
condition will be constructed, which is then considered as
a basis for modeling behavior under the other experi-
mental conditions.

Blocked condition

Since in the blocked condition the spatial-frequency of
the signal is constant across trials, an optimal strategy is
to monitor only that channel which corresponds to the
spatial-frequency of the signal. But how can a channel be
specified? A widely used method is to employ a matched
filter or a cross correlator [e.g. Burgess & Ghandeharian
(1984a); Hauske et al. (1976)]. In both cases, a stored
version (template) of the expected signal is matched with
the stimulus by convolution or cross-correlation, respec-
tively.

One could assume that for each employed sinusoidal
signal there exists a corresponding matched filter.
However, different from our human observers, whose
sensitivity decreased with increasing spatial-frequency,
the sensitivity of a matched filter does not change across
spatial-frequencies, given a fixed spatial extension of the
signal. What matters is solely the amplitude of the signals
[see Hiibner (1993b) for details]. To introduce a spatial-
frequency dependent sensitivity one could assume that
the effect of the signal is proportionally attenuated, or
that an increasing amount of internal noise is added
somewhere along the visual pathway. However, such
manipulations shift the functions parallel to higher
thresholds, which is inconsistent with our data. In the
top panel of Fig. 2, the psychometric function of an ideal
matched-filter is shown, which has an estimated slope of
0.025. It is obvious that the empirical functions are not
parallel to this curve. Even the function for the lowest
spatial-frequency, which seems quite parallel, has a slope
of 0.031.

Another possibility is to assume that the bandwidth
of the channels increases with spatial-frequency, which
is equivalent to assuming that the effective spatial
extension of the filter decreases. This assumption is quite
reasonable, since it is known that the detectability of
gratings increases only up to a critical number of cycles,
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which is constant for medium and high spatial-frequen-
cies [e.g. Howell & Hess (1978); Robson & Graham
(1981)]. This result corresponds to the physiological fact
that the receptive-field size of cortical neurons is smaller
for higher spatial-frequencies [e.g. DeValois er al.
(1982)]. Unfortunately, this assumption also predicts
parallel psychometric functions (Hiibner, 1993b). Thus, a
single matched filter seems to be inappropriate to model
the detection behavior in the present experiment.

One way to use the matched-filter model for predicting
increasing slopes would be to assume intrinsic
uncertainty, which is equivalent to assuming a multi-
ple-band model. By intrinsic uncertainty is meant that
even though a single spatial-frequency is presented
within a given block, the subject is nevertheless uncertain
which channel to monitor and might thus monitor
multiple channels. This assumption predicts an increase
in threshold and slope like the usual multiple-band
models [cf Pelli (1985)]. For adjusting the location of
the psychometric functions precisely, one could addi-
tionally assume some internal noise. In this connection it
should be mentioned that nonlinear transducer functions
have also been proposed for modeling the specific form
of the psychometric functions for contrast detection [e.g.
Foley & Legge (1981); for an overview see Graham
(1989)].

Here, however, an energy-detection model is preferred
to model the behavior, since it can predict a systematic
increase in threshold and slope by simply assuming a
single band with increasing bandwidth (Hiibner, 1993a).
An energy detector is an ideal observer who is not phase
sensitive (Green & Swets, 1966). Although it has been
suggested that the visual system is phase sensitive [e.g.
Burgess & Ghandeharian (1984a)], this might not be the
case under all circumstances, and it certainly does not
hold for high spatial-frequencies (DeValois & DeValois,
1988).

The percentage of a correct answer P(C) for a single-
band energy-detector can be calculated by [¢f Hiibner
(1993a)]:

P(C) = 2(2) (1)

where @ is the cumulative Gaussian distribution and z is
given by:
- £(X;) — £(Xn)
V/var(X;) + var(Xy)

(2)

In this equation X,, denotes the decision variable for the
noise interval with expected value 2WT and variance
4WT. The random variable X represents signal plus noise
with expected value 2WT + 2E;/Ny and variance
4WT + 8E;/Ny. The term T denotes the size of the
stimuli which was 2.66 deg in the present experiment,
and W represents the bandwidth (i.e. the filterwidth in the
spatial-frequency domain), which is considered as a free
parameter. The same noise spectral-density Ny as in the
experiment was used. Observe that for the energy
detector the variance of the signal-plus-noise sample
increases with energy.
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FIGURE 3. Psychometric functions for the condition with the blocked
spatial-frequencies fitted with a single-band energy-detection model.
The bars indicate the 95% confidence interval.

The energy of the signals was computed by:

A2
E, =266, 3)

where the amplitude A was calculated from the threshold
R by:

A = R10%/10, (4)

Bandwidth W and threshold R are considered as free
parameters for each psychometric function. The above-
mentioned search algorithm [PRAXIS; Gegenfurtner
(1992)] was used to fit this model to the averaged
psychometric functions obtained under the blocked
condition. Bandwidth and threshold were searched
simultaneously for all functions until y* was a minimum,
where only those points corresponding to data points
were estimated.

The result, as can be seen in Fig. 3, is quite good
[*(14) = 1.6771, P > 0.995). The values for R are (as
contrast, with increasing spatial-frequency): 0.0118;
0.0197; 0.0239; 0.0216; 0.0270. The values for W are:
0.233; 4.648; 9.619; 8.237; 20.492.

If logistic functions are fitted to the theoretical
psychometric functions in the same manner as to the
empirical data, then a #-test for paired observations
revealed no significant deviations between the estimated
theoretical and empirical threshold and slope parameters
(thresholds: xemp = 0.0781, xmoq = 0.0588, #(4) = 0.969,
P >0.38; slopes: Xemp = 0.0964, xnoq = 0.0906, t(4) =
1.72, P > 0.16).

Our analysis shows that the energy-detection model fits
the data very well. Apart from one reversal between 4.14
and 9.02 c/deg, the threshold (R) and bandwidth (W)
parameters increase with spatial-frequency. Thus, com-
pared with an ideal observer, the human observers can be
characterized by stating that their channels’ bandwidths
increase with spatial-frequency. Additionally, there is
some attenuation, also increasing with spatial-frequency,
along the visual pathway, which is expressed in the
increase in the parameter R. It is important at this point
not to confuse the internal threshold parameter R of the
model and the threshold parameter obtained by fitting a
logistic function to a psychometric function. The latter is
also affected by the bandwidth parameter W.
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The model suggested here for describing the behavior
in the blocked condition can be considered as a general
model for signal-detection behavior in situations without
spatial-frequency uncertainty. Therefore, the model is
also suitable for explaining behavior under sensory-cue
conditions, since sensory cues prevent any uncertainty
effect.

Symbolic cue condition

Under spatial-frequency uncertainty the presentation
of symbolic cues could not entirely compensate for the
uncertainty effects, i.e. detection behavior was still
decreased compared with that in the blocked condition.
That the symbolic cues were nevertheless helpful can be
seen from the fact that they improved detection
performance significantly compared with the no-cue
condition.* How can their effect be explained? Since the
slopes of the psychometric functions did not decrease
compared with those of the blocked condition, the
symbolic cues obviously did not lead to monitoring a
single but inappropriate or slightly mistuned (with
respect to spatial-frequency) channel [see Hiibner
(1993a,b)].

One could speculate that symbolic cues helped to
reduce the number of monitored channels, but that the
reduction was not optimal, i.e. that more than one channel
was monitored. However, it is rather difficult to formu-
late this assumption precisely, since several question
have to be answered. For instance: how far does the reduc-
tion process proceed? Which channels are still monitored?

Alternatively, one can consider the hypothesis that the
symbolic cues led to monitoring a single channel, but that
the channel’s bandwidth was increased compared with
that in the blocked condition [c¢f Hiibner & Hafter
(1995)]. This hypothesis implies, on the one hand, that
sensory cues not only reduce the number of attended
channels but that they also reduce the bandwidth, i.e. that
they also affect the coding process. On the other hand, it
also implies that in the blocked condition there is some
kind of selfcuing. This means that the signal at trial ¢
serves as cue for the signal at trial ¢ + 1, thereby not only
reducing the uncertainty at the decision level but also the
bandwidth of the relevant channel.

Corresponding to this hypothesis, a model with a single
parameter a was considered. The parameter simply
modifies the widths W, i = 1,...,5 proportionally for all
channels, i.e.:

Wsymbolic

l =a Wiblocked ,

(5)
where the threshold (R) and width parameters of the
model for the blocked condition were used.

Fitting this model simultaneously to all five psycho-
metric functions for the symbolic cue condition was quite

*QOne reviewer argued that the reduced efficiency of the symbolic cues,
compared with that of the other cues, might be due to masking,
because only the symbolic cues were presented at the same position
as the stimuli. Although I cannot definitely rule out this
explanation, given the other results obtained with symbolic cues,
as mentioned in the Introduction, it seems highly unlikely that
masking is responsible.
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FIGURE 4. Psychometric functions for the condition with the symbolic
cues fitted with a single-band energy-detection model. The bars
indicate the 95% confidence interval.

successful [*(23) = 7.83, P >0.995], and revealed a
parameter value of a = 1.707. The result is depicted in
Fig. 4. There were no significant deviations of the slopes
and thresholds of the fitted logistic functions from their
empirical counterparts [thresholds: Xemp = 0.5374, Xmod =
0.445, ((4) = 0.679, P > 0.5; slopes: Xemp = 0.1003, Xpmoq =
0.089, #(4) =1.79, P > 0.14].

Thus, the 25 data points could be fitted well by a rather
simple model with a single parameter, given the energy-
detector model obtained from the blocked condition.

Randomized no-cue condition

In this section a model is constructed for explaining
performance in the randomized no-cue condition. Since
the psychometric functions for this condition are steeper
than those for the blocked condition, a single-band model
can be rejected and a multiple-band model seems to be
appropriate [cf Hiibner (1993a)]. Of the various multiple-
band models which have been proposed for modeling
different aspects of the visual system, such as for the
processing of multiple-component stimuli [e.g. Legge &
Foley (1980); for a overview see Olzak & Thomas
(1986)], those are of interest here, which can be
employed for explaining spatial-frequency uncertainty.

For instance, Kramer et al. (1985), who also found
increasing slopes under spatial-frequency uncertainty,
considered several such multiple-band models with
different combination rules for the filter outputs. How-
ever, they assumed all monitored channels to have the
same characteristic. If this assumption does not hold, as
for the data to be considered here, comparing the
predictions for various rules is very intricate. Therefore,
only one decision rule was considered: the weighted sum
of the filter outputs, with weights g; i = 1,...,5, which led
to a decision variable X" of the form:

(6)

This combination rule is similar to the sum-of-outputs
rule which provided the best overall fit for the data of
Kramer et al. (1985).

It was further assumed that the filters which do not
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correspond to the signal frequency behave as in the noise
interval. Therefore, the expected value of X for the noise
interval is:

E0) =273 W 7)

i=1
and that for the signal-plus-noise interval:

5
E(X;)=2T_ gW;+ 2g.E/No,
i=1

(®)

where g denotes the respective weight of the signal
channel.

In an initial step it was assumed that the spatial-
frequency filters do not overlap and, consequently, do not
produce correlated outputs. In this case the outputs can be
treated as independent random variables with variance:

5
var(X)) = 4T ZgizW,-

i=1

9)
for noise, and:

5
var(X;) = 4T > g?W; + 8¢2E,/No
i=1

(10)

for signal plus noise. The resulting z-value for this model
is:

Ey/N
z= 8:E:/No (11)

5
\/ 2T g*W; + 2¢%E /Ny
i=1

While threshold and width parameters for each channel
were taken from the model for the blocked condition,
only the weights g; for each filter were considered as free
parameters. The weights were normalized such that they
always summed up to one. This normalization should
reduce the parameter space. On the other hand, it also
reduced the variance of the decision variable compared
with a simple summation rule.

Although the overall fit with this model was relatively
good [¥(19) = 9.1984, P > 0.95], the thresholds obtained
by fitting logistic functions to the data are overestimated
and the slopes are systematically underestimated [thresh-
olds: Xemp = 1.21, Xpoa = 1.58, #4)=6.56, P <0.01;
slopes: Xemp = 0.1188, Xxnoa = 0.0940, #4) =3.27, P<
0.05].

Even though normalization of the weights already
reduces the variance of the decision variable, the model
fit suggests that it is still too large. How can this over-
estimation of variance be explained? One reason could be
that the channels are not independent. If the frequency-
response functions of neighboring channels overlap, then
the fact that the variance of the decision variable is
overestimated can be explained by assuming that the
channel outputs are negatively correlated, possibly due to
mutual inhibition. In this case, one would have to subtract
twice the absolute amount of the covariances from the
overall sum of the individual variances to obtain an
appropriate variance estimation. However, such a cross-
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FIGURE 5. Psychometric functions for the condition with randomized
spatial-frequencies and no cues fitted with a multiple-band energy-
detection model. The bars indicate the 95% confidence interval.

channel correlation is rather difficult to model. Thus, to
keep the model relatively simple, the amount of channel
overlap was estimated by assuming a certain filter shape
and employing the individual filter widths. The estimates
W; reflect the equivalent bandwidth, i.e. the area under
the filter function divided by the function’s maximum
height. If one further considers the area under the overall
envelope of the five overlapping filters as a measure of
the effective noise, then, by integrating from O to 50
c/deg, it appears that it is only 62.2% of the sum of the
individual filter areas.

By decreasing the variance of the decision variable
accordingly, the fit improved [3*(19) = 5.77, P > 0.995],
and there were no significant threshold and slope
differences [thresholds: Xemp = 1.21, xmog = 1.23, £(4) =
0.18, P>0.8; slopes: Xxemp = 0.1188, xiheo = 0.0970,
14) =252, P> 0.07].

The obtained weights g; are: 0.225; 0.212; 0.163;
0.273; 0.127.

The curves for the individual psychometric functions
fitted by this model are depicted in Fig. 5. As can be seen,
even the fit to the data for the lowest spatial-frequency is
rather good.

In this model it has been assumed that the character-
istic of the individual channels is identical to that in the
blocked condition. However, although this assumption
finally led to a good fit, it is inconsistent with the
conclusions drawn in the last section. There is no reason
to assume that the filters are narrower in the randomized
no-cue condition than in the symbolic cue condition.

If we assume that in the randomized no-cue condition
the width of the individual channels was identical to that
in the symbolic cue condition (i.e. the width parameters
of the blocked condition times 1.707), then this would
increase the variance. This modification makes it
necessary to calculate the amount of effective noise, i.e.
the area under the envelope, again, which now turned out
to be 41.8% of the sum of the individual channel widths.
This modification leads to almost identical results.

CONCLUSION

The empirical results show that, when the task is to
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detect sinusoidal gratings in white noise, the thresholds as
well as the slopes of the psychometric functions increase
with spatial-frequency. This suggests that an energy-
detector model might be more appropriate for describing
the behavior of the individual spatial-frequency channels
than a matched-filter model.

It has further been shown that spatial-frequency
uncertainty leads to higher thresholds and steeper
psychometric functions compared with detection under
certainty. This fact excludes traditional single-band
models for modeling the uncertainty effect and favors
multiple-band models [c¢f Hiibner (1993a)].

Unexpectedly, it turned out that the size of the
uncertainty effect varied considerably across spatial-
frequencies. Nevertheless, a multiple-band model, where
the outputs of the individual channels were linearly
combined to construct a single decision variable, could fit
the data quite well.

Although the estimated value of the weight (g) for the
channel with the smallest uncertainty effect is the largest,
it is obvious that the obtained weight pattern is not the
main reason for the differential uncertainty effect. Rather,
the characteristic of the individual channels seems to
produce most of the variation. The effect-size differences
can easily be understood if one considers the individual
channels’ contribution to the effective noise.

For simplicity, compare only two channels: one for the
lowest and one for the highest spatial-frequency. Because
the bandwidth of the channel for the lowest spatial-
frequency is rather small, it is highly sensitive. This
means that in a single-band condition (no uncertainty)
only a small signal amplitude is needed to obtain a certain
signal-to-noise ratio. On the other hand, the channel for
the highest spatial-frequency is less sensitive, since its
bandwidth is broader, and a high signal contrast is needed
to obtain the same signal-to-noise ratio. If, under
uncertainty, the output of both channels is added, then
the same amount of noise is effective, independent of the
spatial-frequency of the signal.

Now assume that the low spatial-frequency signal with
its low contrast is present. In this case the relatively large
amount of noise contributed by the high spatial-
frequency channel would lead to an extremely low
signal-to-noise ratio compared with the single-band
condition, and to a corresponding performance reduction.
If, on the other hand, the signal with the high spatial-
frequency with its high contrast is present, then the
signal-to-noise ratio and the corresponding performance
is hardly affected by the small amount of extra noise
contributed by the low spatial-frequency channel. This
asymmetry can explain the large effect-size differences.

The presentation of cues indicating the spatial-
frequency of the signal in the subsequent trial signifi-
cantly reduced the spatial-frequency uncertainty effect.
Particularly effective in this respect were the sensory
cues. Since they were presented at a different location in
the visual field as the signals, and since the rotated and
phase cues were also highly effective, it can be concluded
that sensory cuing takes place at higher stages in the

R. HUBNER

visual pathway, where spatial-frequency is coded in-
dependently of phase and orientation [cf Burbeck &
Regan (1983); Bradley & Skottun (1984); Heeley et al.
(1993); Magnussen et al. (1990)], and also independently
of retinal coordinates (Burbeck, 1987).

Although the symbolic cues also appreciably reduced
uncertainty, they were less effective than the sensory
cues. This could indicate that the symbolic cues affected
merely the decision process, whereas the sensory cues
additionally affected stimulus coding by decreasing the
width of the sensory filters. Unfortunately, the considered
models for the randomized no-cue condition provide no
strong support for this view. The model with the smaller
filters fitted the data similarly well. Thus, the question of
whether the cues affect the coding or the decision process
cannot definitively be answered.

These difficulties encourage one to generally question
the assumption that two stages are sufficient to describe
the results, and to consider alternative interpretations.
One possibility is to introduce an additional stage where
the outputs of spatial-frequency channels, which are
assumed to process the stimuli in parallel (coding stage),
are selected (selection stage) into the visual short-term
memory (VSTM). The selected information is then used
to determine the response (decision stage). Such a late-
selection model has also been proposed by Miiller and
Humphreys (1991) in connection with spatial uncer-
tainty.

Within this framework, cues can be thought of as
improving the selection process. The more relevant
information a cue provides the more precise the selection
process will be and, consequently, the less noise will be
selected. For instance, to utilize symbolic cues, the
subjects have to rely on the spatial-frequency information
recalled from long-term memory. This information
should be less precise than that provided by the sensory
cues which can directly be stored in the VSTM and might
be nearly perfect [c¢f Magnussen et al. (1990, 1991)].
Reduced precision leads to the selection of some
additional noise from neighboring channels.

Such a conception would also be in line with the model
fitted for the symbolic cue condition. One would merely
have to assume that the additional noise is proportional to
the filter width of the cued channel.
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